3,387 research outputs found

    Bivariate spline interpolation with optimal approximation order

    Get PDF
    Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181

    Recent Results on Near-Best Spline Quasi-Interpolants

    Full text link
    Roughly speaking, a near-best (abbr. NB) quasi-interpolant (abbr. QI) is an approximation operator of the form Qaf=αAΛα(f)BαQ_af=\sum_{\alpha\in A} \Lambda_\alpha (f) B_\alpha where the BαB_\alpha's are B-splines and the Λα(f)\Lambda_\alpha (f)'s are linear discrete or integral forms acting on the given function ff. These forms depend on a finite number of coefficients which are the components of vectors aαa_\alpha for αA\alpha\in A. The index aa refers to this sequence of vectors. In order that Qap=pQ_a p=p for all polynomials pp belonging to some subspace included in the space of splines generated by the BαB_\alpha's, each vector aαa_\alpha must lie in an affine subspace VαV_\alpha, i.e. satisfy some linear constraints. However there remain some degrees of freedom which are used to minimize aα1\Vert a_\alpha \Vert_1 for each αA\alpha\in A. It is easy to prove that max{aα1;αA}\max \{\Vert a_\alpha \Vert_1 ; \alpha\in A\} is an upper bound of Qa\Vert Q_a \Vert_{\infty}: thus, instead of minimizing the infinite norm of QaQ_a, which is a difficult problem, we minimize an upper bound of this norm, which is much easier to do. Moreover, the latter problem has always at least one solution, which is associated with a NB QI. In the first part of the paper, we give a survey on NB univariate or bivariate spline QIs defined on uniform or non-uniform partitions and already studied by the author and coworkers. In the second part, we give some new results, mainly on univariate and bivariate integral QIs on {\sl non-uniform} partitions: in that case, NB QIs are more difficult to characterize and the optimal properties strongly depend on the geometry of the partition. Therefore we have restricted our study to QIs having interesting shape properties and/or infinite norms uniformly bounded independently of the partition

    C2 piecewise cubic quasi-interpolants on a 6-direction mesh

    Get PDF
    We study two kinds of quasi-interpolants (abbr. QI) in the space of C2 piecewise cubics in the plane, or in a rectangular domain, endowed with the highly symmetric triangulation generated by a uniform 6-direction mesh. It has been proved recently that this space is generated by the integer translates of two multi-box splines. One kind of QIs is of differential type and the other of discrete type. As those QIs are exact on the space of cubic polynomials, their approximation order is 4 for sufficiently smooth functions. In addition, they exhibit nice superconvergent properties at some specific points. Moreover, the infinite norms of the discrete QIs being small, they give excellent approximations of a smooth function and of its first order partial derivatives. The approximation properties of the QIs are illustrated by numerical examples

    Bivariate hierarchical Hermite spline quasi--interpolation

    Full text link
    Spline quasi-interpolation (QI) is a general and powerful approach for the construction of low cost and accurate approximations of a given function. In order to provide an efficient adaptive approximation scheme in the bivariate setting, we consider quasi-interpolation in hierarchical spline spaces. In particular, we study and experiment the features of the hierarchical extension of the tensor-product formulation of the Hermite BS quasi-interpolation scheme. The convergence properties of this hierarchical operator, suitably defined in terms of truncated hierarchical B-spline bases, are analyzed. A selection of numerical examples is presented to compare the performances of the hierarchical and tensor-product versions of the scheme

    Local RBF approximation for scattered data fitting with bivariate splines

    Get PDF
    In this paper we continue our earlier research [4] aimed at developing effcient methods of local approximation suitable for the first stage of a spline based two-stage scattered data fitting algorithm. As an improvement to the pure polynomial local approximation method used in [5], a hybrid polynomial/radial basis scheme was considered in [4], where the local knot locations for the RBF terms were selected using a greedy knot insertion algorithm. In this paper standard radial local approximations based on interpolation or least squares are considered and a faster procedure is used for knot selection, signicantly reducing the computational cost of the method. Error analysis of the method and numerical results illustrating its performance are given

    Interpolating point spread function anisotropy

    Full text link
    Planned wide-field weak lensing surveys are expected to reduce the statistical errors on the shear field to unprecedented levels. In contrast, systematic errors like those induced by the convolution with the point spread function (PSF) will not benefit from that scaling effect and will require very accurate modeling and correction. While numerous methods have been devised to carry out the PSF correction itself, modeling of the PSF shape and its spatial variations across the instrument field of view has, so far, attracted much less attention. This step is nevertheless crucial because the PSF is only known at star positions while the correction has to be performed at any position on the sky. A reliable interpolation scheme is therefore mandatory and a popular approach has been to use low-order bivariate polynomials. In the present paper, we evaluate four other classical spatial interpolation methods based on splines (B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and ordinary Kriging (OK). These methods are tested on the Star-challenge part of the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) simulated data and are compared with the classical polynomial fitting (Polyfit). We also test all our interpolation methods independently of the way the PSF is modeled, by interpolating the GREAT10 star fields themselves (i.e., the PSF parameters are known exactly at star positions). We find in that case RBF to be the clear winner, closely followed by the other local methods, IDW and OK. The global methods, Polyfit and B-splines, are largely behind, especially in fields with (ground-based) turbulent PSFs. In fields with non-turbulent PSFs, all interpolators reach a variance on PSF systematics σsys2\sigma_{sys}^2 better than the 1×1071\times10^{-7} upper bound expected by future space-based surveys, with the local interpolators performing better than the global ones
    corecore