6,343 research outputs found

    Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands

    Full text link
    We study a random sampling technique to approximate integrals ∫[0,1]sf(x) dx\int_{[0,1]^s}f(\mathbf{x})\,\mathrm{d}\mathbf{x} by averaging the function at some sampling points. We focus on cases where the integrand is smooth, which is a problem which occurs in statistics. The convergence rate of the approximation error depends on the smoothness of the function ff and the sampling technique. For instance, Monte Carlo (MC) sampling yields a convergence of the root mean square error (RMSE) of order N−1/2N^{-1/2} (where NN is the number of samples) for functions ff with finite variance. Randomized QMC (RQMC), a combination of MC and quasi-Monte Carlo (QMC), achieves a RMSE of order N−3/2+εN^{-3/2+\varepsilon} under the stronger assumption that the integrand has bounded variation. A combination of RQMC with local antithetic sampling achieves a convergence of the RMSE of order N−3/2−1/s+εN^{-3/2-1/s+\varepsilon} (where s≥1s\ge1 is the dimension) for functions with mixed partial derivatives up to order two. Additional smoothness of the integrand does not improve the rate of convergence of these algorithms in general. On the other hand, it is known that without additional smoothness of the integrand it is not possible to improve the convergence rate. This paper introduces a new RQMC algorithm, for which we prove that it achieves a convergence of the root mean square error (RMSE) of order N−α−1/2+εN^{-\alpha-1/2+\varepsilon} provided the integrand satisfies the strong assumption that it has square integrable partial mixed derivatives up to order α>1\alpha>1 in each variable. Known lower bounds on the RMSE show that this rate of convergence cannot be improved in general for integrands with this smoothness. We provide numerical examples for which the RMSE converges approximately with order N−5/2N^{-5/2} and N−7/2N^{-7/2}, in accordance with the theoretical upper bound.Comment: Published in at http://dx.doi.org/10.1214/11-AOS880 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fractional smoothness and applications in finance

    Full text link
    This overview article concerns the notion of fractional smoothness of random variables of the form g(XT)g(X_T), where X=(Xt)t∈[0,T]X=(X_t)_{t\in [0,T]} is a certain diffusion process. We review the connection to the real interpolation theory, give examples and applications of this concept. The applications in stochastic finance mainly concern the analysis of discrete time hedging errors. We close the review by indicating some further developments.Comment: Chapter of AMAMEF book. 20 pages

    Recent advances in higher order quasi-Monte Carlo methods

    Full text link
    In this article we review some of recent results on higher order quasi-Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who originally introduced the concept of HoQMC, there have been significant theoretical progresses on HoQMC in terms of discrepancy as well as multivariate numerical integration. Moreover, several successful and promising applications of HoQMC to partial differential equations with random coefficients and Bayesian estimation/inversion problems have been reported recently. In this article we start with standard quasi-Monte Carlo methods based on digital nets and sequences in the sense of Niederreiter, and then move onto their higher order version due to Dick. The Walsh analysis of smooth functions plays a crucial role in developing the theory of HoQMC, and the aim of this article is to provide a unified picture on how the Walsh analysis enables recent developments of HoQMC both for discrepancy and numerical integration
    • …
    corecore