52,674 research outputs found

    Capturing pattern bi-stability dynamics in delay-coupled swarms

    Full text link
    Swarms of large numbers of agents appear in many biological and engineering fields. Dynamic bi-stability of co-existing spatio-temporal patterns has been observed in many models of large population swarms. However, many reduced models for analysis, such as mean-field (MF), do not capture the bifurcation structure of bi-stable behavior. Here, we develop a new model for the dynamics of a large population swarm with delayed coupling. The additional physics predicts how individual particle dynamics affects the motion of the entire swarm. Specifically, (1) we correct the center of mass propulsion physics accounting for the particles velocity distribution; (2) we show that the model we develop is able to capture the pattern bi-stability displayed by the full swarm model.Comment: 6 pages 4 figure

    An enhanced random early marking algorithm for Internet flow control

    Get PDF
    We propose earlier an optimization based flow control for the Internet called Random Early Marking (REM). In this paper we propose and evaluate an enhancement that attempts to speed up the convergence of REM in the face of large feedback delays. REM can be regarded as an implementation of an optimization algorithm in a distributed network. The basic idea is to treat the optimization algorithm as a discrete time system and apply linear control techniques to stabilize its transient. We show that the modified algorithm is stable globally and converges exponentially locally. This algorithm translates into an enhanced REM scheme and we illustrate the performance improvement through simulation

    Noise, Bifurcations, and Modeling of Interacting Particle Systems

    Full text link
    We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles

    On the Catalyzing Effect of Randomness on the Per-Flow Throughput in Wireless Networks

    Get PDF
    This paper investigates the throughput capacity of a flow crossing a multi-hop wireless network, whose geometry is characterized by general randomness laws including Uniform, Poisson, Heavy-Tailed distributions for both the nodes' densities and the number of hops. The key contribution is to demonstrate \textit{how} the \textit{per-flow throughput} depends on the distribution of 1) the number of nodes NjN_j inside hops' interference sets, 2) the number of hops KK, and 3) the degree of spatial correlations. The randomness in both NjN_j's and KK is advantageous, i.e., it can yield larger scalings (as large as Θ(n)\Theta(n)) than in non-random settings. An interesting consequence is that the per-flow capacity can exhibit the opposite behavior to the network capacity, which was shown to suffer from a logarithmic decrease in the presence of randomness. In turn, spatial correlations along the end-to-end path are detrimental by a logarithmic term
    corecore