42 research outputs found

    On the Approximation Errors in the Frequency Test Included in the NIST SP800-22 Statistical Test Suite

    Get PDF
    In previous papers we have addressed the problem of testing Random Number Generators (RNGs) through statistical tests, with particular emphasis on the approach we called second-level testing. We have shown that this approach is capable of achieving much higher accuracy in exposing non-random generators, but may suffer from reliability issues due to approximations introduced in the test. Here we consider the NIST Frequency Test and present a mathematical expression of the error introduced by approximating the effective discrete distribution function with its continuous limit distribution. The matching against experimental data is almost perfect. © 2008 IEEE

    More Powerful and Reliable Second-level Statistical Randomness Tests for NIST SP 800-22

    Get PDF
    Random number generators (RNGs) are essential for cryptographic systems, and statistical tests are usually employed to assess the randomness of their outputs. As the most commonly used statistical test suite, the NIST SP 800-22 suite includes 15 test items, each of which contains two-level tests. For the test items based on the binomial distribution, we find that their second-level tests are flawed due to the inconsistency between the assessed distribution and the assumed one. That is, the sequence that passes the test could still have statistical flaws in the assessed aspect. For this reason, we propose Q-value as the metric for these second-level tests to replace the original P-value without any extra modification, and the first-level tests are kept unchanged. We provide the correctness proof of the proposed Q-value based second-level tests. We perform the theoretical analysis to demonstrate that the modification improves not only the detectability, but also the reliability. That is, the tested sequence that dissatisfies the randomness hypothesis has a higher probability to be rejected by the improved test, and the sequence that satisfies the hypothesis has a higher probability to pass it. The experimental results on several deterministic RNGs indicate that, the Q-value based method is able to detect some statistical flaws that the original SP 800-22 suite cannot realize under the same test parameters

    Randomness Tests for Binary Sequences

    Get PDF
    Cryptography is vital in securing sensitive information and maintaining privacy in the today’s digital world. Though sometimes underestimated, randomness plays a key role in cryptography, generating unpredictable keys and other related material. Hence, high-quality random number generators are a crucial element in building a secure cryptographic system. In dealing with randomness, two key capabilities are essential. First, creating strong random generators, that is, systems able to produce unpredictable and statistically independent numbers. Second, constructing validation systems to verify the quality of the generators. In this dissertation, we focus on the second capability, specifically analyzing the concept of hypothesis test, a statistical inference model representing a basic tool for the statistical characterization of random processes. In the hypothesis testing framework, a central idea is the p-value, a numerical measure assigned to each sample generated from the random process under analysis, allowing to assess the plausibility of a hypothesis, usually referred to as the null hypothesis, about the random process on the basis of the observed data. P-values are determined by the probability distribution associated with the null hypothesis. In the context of random number generators, this distribution is inherently discrete but in the literature it is commonly approximated by continuous distributions for ease of handling. However, analyzing in detail the discrete setting, we show that the mentioned approximation can lead to errors. As an example, we thoroughly examine the testing strategy for random number generators proposed by the National Institute of Standards and Technology (NIST) and demonstrate some inaccuracies in the suggested approach. Motivated by this finding, we define a new simple hypothesis test as a use case to propose and validate a methodology for assessing the definition and implementation correctness of hypothesis tests. Additionally, we present an abstract analysis of the hypothesis test model, which proves valuable in providing a more accurate conceptual framework within the discrete setting. We believe that the results presented in this dissertation can contribute to a better understanding of how hypothesis tests operate in discrete cases, such as analyzing random number generators. In the demanding field of cryptography, even slight discrepancies between the expected and actual behavior of random generators can, in fact, have significant implications for data security

    A Chaos-Based Authenticated Cipher with Associated Data

    Get PDF
    In recent years, there has been a rising interest in authenticated encryptionwith associated data (AEAD)which combines encryption and authentication into a unified scheme. AEAD schemes provide authentication for a message that is divided into two parts: associated data which is not encrypted and the plaintext which is encrypted. However, there is a lack of chaos-based AEAD schemes in recent literature. This paper introduces a new128-bit chaos-based AEAD scheme based on the single-key Even-Mansour and Type-II generalized Feistel structure. The proposed scheme provides both privacy and authentication in a single-pass using only one 128-bit secret key. The chaotic tent map is used to generate whitening keys for the Even-Mansour construction, round keys, and random s-boxes for the Feistel round function. In addition, the proposed AEAD scheme can be implemented with true randomnumber generators to map a message tomultiple possible ciphertexts in a nondeterministic manner. Security and statistical evaluation indicate that the proposed scheme is highly secure for both the ciphertext and the authentication tag. Furthermore, it has multiple advantages over AES-GCM which is the current standard for authenticated encryption
    corecore