7,476 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Distributed Construction and Maintenance of Bandwidth-Efficient Bluetooth Scatternets

    Get PDF
    Bluetooth networks can be constructed as piconets or scatternets depending on the number of nodes in the network. Although piconet construction is a well-defined process specified in Bluetooth standards, scatternet construction policies and algorithms are not well specified. Among many solution proposals for this problem, only a few of them focus on efficient usage of bandwidth in the resulting scatternets. In this paper, we propose a distributed algorithm for the scatternet construction problem, that dynamically constructs and maintains a scatternet based on estimated traffic flow rates between nodes. The algorithm is adaptive to changes and maintains a constructed scatternet for bandwidth-efficiency when nodes come and go or when traffic flow rates change. Based on simulations, the paper also presents the improvements in bandwidth-efficiency provided by the proposed algorithm

    Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks

    Full text link
    With increase in ageing population, health care market keeps growing. There is a need for monitoring of health issues. Wireless Body Area Network (WBAN) consists of wireless sensors attached on or inside human body for monitoring vital health related problems e.g, Electro Cardiogram (ECG), Electro Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening situations, timely sending of data is essential. For data to reach health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to health care center. Delay of data reaching each device is calculated and represented graphically. Main aim of this paper is to calculate delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa
    corecore