3,240 research outputs found

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    A tabu search algorithm for scheduling a single robot in a job-shop environment

    Get PDF
    We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the travelling-salesman problem with time windows, where additionally generalized precedence constraints have to be respected. The objective is to determine a sequence of all nodes and corresponding starting times in the given time windows in such a way that all generalized precedence relations are respected and the sum of all travelling and waiting times is minimized. We present a local search algorithm for this problem where an appropriate neighborhood structure is defined using problem-specific properties. In order to make the search process more efficient, we apply some techniques which accelerate the evaluation of the solutions in the proposed neighbourhood considerably. Computational results are presented for test data arising from job-shop instances with a single transport robot

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    An Optimal Algorithm for Integrating Printed Circuit Board Manufacturing Problems

    Get PDF
    Printed circuit boards appear in a wide array of products and thus their production is crucial to the contemporary electronics industry. A global approach to planning the complex and multi-stage production process is currently intractable. Nonetheless,significant improvements can be made by integrating closely related elements within the planning process. We focus here on the integration of two key problems -- product clustering and machine setup. In the product clustering problem, board types with similar component requirements are clustered together for assembly under a common configuration of the pick-and-place machine. In the machine setup problem, an optimal configuration of the pick-and-place machine is found for each of these clusters. In practice and in the literature, the product clustering and machine setup problems are typically solved sequentially. By instead solving the two problems simultaneously, we are able to find an optimal tradeoff between processing and setup times. We present the Integrated Clustering and Machine Setup model as a set partitioning problem. We describe a branch-and-price algorithm for solving this exponentially large problem. We introduce a rank-cluster-and-prune, a method for solving the imbedded pricing problems by combinatorial search, and conclude with computational results
    corecore