8,343 research outputs found

    Magnitude control of commutator errors

    Get PDF
    Non-uniform filtering of the Navier-Stokes equations expresses itself, next to the turbulent stresses, in additional closure terms known as commutator errors. These terms require explicit subgrid modeling if the non-uniformity of the filter is sufficiently pronounced. We derive expressions for the magnitude of the mean flux, the turbulent stress flux and the commutator error for individual Fourier modes. This gives rise to conditions for the spatial variations in the filter-width and the filter-skewness subject to which the magnitude of the commutator errors can be controlled. These conditions are translated into smoothness requirements of the computational grid, that involve ratios of first -, second - and third order derivatives of the grid mapping

    Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes

    Full text link
    We have developed the formalism necessary to employ the discontinuous-Galerkin approach in general-relativistic hydrodynamics. The formalism is firstly presented in a general 4-dimensional setting and then specialized to the case of spherical symmetry within a 3+1 splitting of spacetime. As a direct application, we have constructed a one-dimensional code, EDGES, which has been used to asses the viability of these methods via a series of tests involving highly relativistic flows in strong gravity. Our results show that discontinuous Galerkin methods are able not only to handle strong relativistic shock waves but, at the same time, to attain very high orders of accuracy and exponential convergence rates in smooth regions of the flow. Given these promising prospects and their affinity with a pseudospectral solution of the Einstein equations, discontinuous Galerkin methods could represent a new paradigm for the accurate numerical modelling in relativistic astrophysics.Comment: 24 pages, 19 figures. Small changes; matches version to appear in PR

    Regularization modeling for large-eddy simulation of diffusion flames

    Get PDF
    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more conventional dynamic mixed model. The location of the flame-center is defined by the 'stoichiometric' interface. Geometrical properties such as its surface-area and wrinkling are characterized using an accurate numerical level-set quadrature method. This allows to quantify flame-properties as well as turbulence modulation effects due to coupling between combustion and turbulent transport. We determine the active flame-region that is responsible for the main part of the chemical conversion in the flame and compare direct and large-eddy simulation predictions

    Numerical studies towards practical large-eddy simulation

    Get PDF
    Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine

    Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study

    Get PDF
    A database of transitional direct numerical simulation (DNS) realizations of a supercritical mixing layer is analysed for understanding small-scale behaviour and examining subgrid-scale (SGS) models duplicating that behaviour. Initially, the mixing layer contains a single chemical species in each of the two streams, and a perturbation promotes roll-up and a double pairing of the four spanwise vortices initially present. The database encompasses three combinations of chemical species, several perturbation wavelengths and amplitudes, and several initial Reynolds numbers specifically chosen for the sole purpose of achieving transition. The DNS equations are the Navier-Stokes, total energy and species equations coupled to a real-gas equation of state; the fluxes of species and heat include the Soret and Dufour effects. The large-eddy simulation (LES) equations are derived from the DNS ones through filtering. Compared to the DNS equations, two types of additional terms are identified in the LES equations: SGS fluxes and other terms for which either assumptions or models are necessary. The magnitude of all terms in the LES conservation equations is analysed on the DNS database, with special attention to terms that could possibly be neglected. It is shown that in contrast to atmospheric-pressure gaseous flows, there are two new terms that must be modelled: one in each of the momentum and the energy equations. These new terms can be thought to result from the filtering of the nonlinear equation of state, and are associated with regions of high density-gradient magnitude both found in DNS and observed experimentally in fully turbulent high-pressure flows. A model is derived for the momentum-equation additional term that performs well at small filter size but deteriorates as the filter size increases, highlighting the necessity of ensuring appropriate grid resolution in LES. Modelling approaches for the energy-equation additional term are proposed, all of which may be too computationally intensive in LES. Several SGS flux models are tested on an a priori basis. The Smagorinsky (SM) model has a poor correlation with the data, while the gradient (GR) and scale-similarity (SS) models have high correlations. Calibrated model coefficients for the GR and SS models yield good agreement with the SGS fluxes, although statistically, the coefficients are not valid over all realizations. The GR model is also tested for the variances entering the calculation of the new terms in the momentum and energy equations; high correlations are obtained, although the calibrated coefficients are not statistically significant over the entire database at fixed filter size. As a manifestation of the small-scale supercritical mixing peculiarities, both scalar-dissipation visualizations and the scalar-dissipation probability density functions (PDF) are examined. The PDF is shown to exhibit minor peaks, with particular significance for those at larger scalar dissipation values than the mean, thus significantly departing from the Gaussian behaviour

    Regularization modeling for large-eddy simulation of homogeneous isotropic decaying turbulence

    Get PDF
    Inviscid regularization modeling of turbulent flow is investigated. Homogeneous, isotropic, decaying turbulence is simulated at a range of filter widths. A coarse-graining of turbulent flow arises from the direct regularization of the convective nonlinearity in the Navier–Stokes equations. The regularization is translated into its corresponding sub-filter model to close the equations for large-eddy simulation (LES). The accuracy with which primary turbulent flow features are captured by this modeling is investigated for the Leray regularization, the Navier–Stokes-α formulation (NS-α), the simplified Bardina model and a modified Leray approach. On a PDE level, each regularization principle is known to possess a unique, strong solution with known regularity properties. When used as turbulence closure for numerical simulations, significant differences between these models are observed. Through a comparison with direct numerical simulation (DNS) results, a detailed assessment of these regularization principles is made. The regularization models retain much of the small-scale variability in the solution. The smaller resolved scales are dominated by the specific sub-filter model adopted. We find that the Leray model is in general closest to the filtered DNS results, the modified Leray model is found least accurate and the simplified Bardina and NS-α models are in between, as far as accuracy is concerned. This rough ordering is based on the energy decay, the Taylor Reynolds number and the velocity skewness, and on detailed characteristics of the energy dynamics, including spectra of the energy, the energy transfer and the transfer power. At filter widths up to about 10% of the computational domain-size, the Leray and NS-α predictions were found to correlate well with the filtered DNS data. Each of the regularization models underestimates the energy decay rate and overestimates the tail of the energy spectrum. The correspondence with unfiltered DNS spectra was observed often to be closer than with filtered DNS for several of the regularization models

    A New Spherical Harmonics Scheme for Multi-Dimensional Radiation Transport I: Static Matter Configurations

    Get PDF
    Recent work by McClarren & Hauck [29] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.Comment: 29 pages, 13 figures. Version matching the one in Journal of Computational Physic
    corecore