672 research outputs found

    Construction of wiretap codes from ordinary channel codes

    Full text link
    From an arbitrary given channel code over a discrete or Gaussian memoryless channel, we construct a wiretap code with the strong security. Our construction can achieve the wiretap capacity under mild assumptions. The key tool is the new privacy amplification theorem bounding the eavesdropped information in terms of the Gallager function.Comment: 5 pages, no figure, IEEEtran.cls. Submitted to 2010 IEEE ISI

    Power and Bandwidth Efficient Coded Modulation for Linear Gaussian Channels

    Get PDF
    A scheme for power- and bandwidth-efficient communication on the linear Gaussian channel is proposed. A scenario is assumed in which the channel is stationary in time and the channel characteristics are known at the transmitter. Using interleaving, the linear Gaussian channel with its intersymbol interference is decomposed into a set of memoryless subchannels. Each subchannel is further decomposed into parallel binary memoryless channels, to enable the use of binary codes. Code bits from these parallel binary channels are mapped to higher-order near-Gaussian distributed constellation symbols. At the receiver, the code bits are detected and decoded in a multistage fashion. The scheme is demonstrated on a simple instance of the linear Gaussian channel. Simulations show that the scheme achieves reliable communication at 1.2 dB away from the Shannon capacity using a moderate number of subchannels

    Design and Analysis of Nonbinary LDPC Codes for Arbitrary Discrete-Memoryless Channels

    Full text link
    We present an analysis, under iterative decoding, of coset LDPC codes over GF(q), designed for use over arbitrary discrete-memoryless channels (particularly nonbinary and asymmetric channels). We use a random-coset analysis to produce an effect that is similar to output-symmetry with binary channels. We show that the random selection of the nonzero elements of the GF(q) parity-check matrix induces a permutation-invariance property on the densities of the decoder messages, which simplifies their analysis and approximation. We generalize several properties, including symmetry and stability from the analysis of binary LDPC codes. We show that under a Gaussian approximation, the entire q-1 dimensional distribution of the vector messages is described by a single scalar parameter (like the distributions of binary LDPC messages). We apply this property to develop EXIT charts for our codes. We use appropriately designed signal constellations to obtain substantial shaping gains. Simulation results indicate that our codes outperform multilevel codes at short block lengths. We also present simulation results for the AWGN channel, including results within 0.56 dB of the unconstrained Shannon limit (i.e. not restricted to any signal constellation) at a spectral efficiency of 6 bits/s/Hz.Comment: To appear, IEEE Transactions on Information Theory, (submitted October 2004, revised and accepted for publication, November 2005). The material in this paper was presented in part at the 41st Allerton Conference on Communications, Control and Computing, October 2003 and at the 2005 IEEE International Symposium on Information Theor
    corecore