4,451 research outputs found

    Learning Effective Changes for Software Projects

    Full text link
    The primary motivation of much of software analytics is decision making. How to make these decisions? Should one make decisions based on lessons that arise from within a particular project? Or should one generate these decisions from across multiple projects? This work is an attempt to answer these questions. Our work was motivated by a realization that much of the current generation software analytics tools focus primarily on prediction. Indeed prediction is a useful task, but it is usually followed by "planning" about what actions need to be taken. This research seeks to address the planning task by seeking methods that support actionable analytics that offer clear guidance on what to do. Specifically, we propose XTREE and BELLTREE algorithms for generating a set of actionable plans within and across projects. Each of these plans, if followed will improve the quality of the software project.Comment: 4 pages, 2 figures. This a submission for ASE 2017 Doctoral Symposiu

    Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

    Get PDF
    The earlier defect prediction and fault removal can play a vital role in ensuring software reliability and quality of service In this paper Hybrid Evolutionary computing based Neural Network HENN based software defect prediction model has been developed For HENN an adaptive genetic algorithm A-GA has been developed that alleviates the key existing limitations like local minima and convergence Furthermore the implementation of A-GA enables adaptive crossover and mutation probability selection that strengthens computational efficiency of our proposed system The proposed HENN algorithm has been used for adaptive weight estimation and learning optimization in ANN for defect prediction In addition a novel defect prediction and fault removal cost estimation model has been derived to evaluate the cost effectiveness of the proposed system The simulation results obtained for PROMISE and NASA MDP datasets exhibit the proposed model outperforms Levenberg Marquardt based ANN system LM-ANN and other systems as well And also cost analysis exhibits that the proposed HENN model is approximate 21 66 cost effective as compared to LM-AN

    Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

    Get PDF
    To meet the requirement of an efficient software defect prediction,in this paper an evolutionary computing based neural network learning scheme has been developed that alleviates the existing Artificial Neural Network (ANN) limitations such as local minima and convergence issues. To achieve optimal software defect prediction, in this paper, Adaptive-Genetic Algorithm (A-GA) based ANN learning and weightestimation scheme has been developed. Unlike conventional GA, in this paper we have used adaptive crossover and mutation probability parameter that alleviates the issue of disruption towards optimal solution. We have used object oriented software metrics, CK metrics for fault prediction and the proposed Evolutionary Computing Based Hybrid Neural Network (HENN)algorithm has been examined for performance in terms of accuracy, precision, recall, F-measure, completeness etc, where it has performed better as compared to major existing schemes. The proposed scheme exhibited 97.99% prediction accuracy while ensuring optimal precision, Fmeasure and recall

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Connecting Software Metrics across Versions to Predict Defects

    Full text link
    Accurate software defect prediction could help software practitioners allocate test resources to defect-prone modules effectively and efficiently. In the last decades, much effort has been devoted to build accurate defect prediction models, including developing quality defect predictors and modeling techniques. However, current widely used defect predictors such as code metrics and process metrics could not well describe how software modules change over the project evolution, which we believe is important for defect prediction. In order to deal with this problem, in this paper, we propose to use the Historical Version Sequence of Metrics (HVSM) in continuous software versions as defect predictors. Furthermore, we leverage Recurrent Neural Network (RNN), a popular modeling technique, to take HVSM as the input to build software prediction models. The experimental results show that, in most cases, the proposed HVSM-based RNN model has a significantly better effort-aware ranking effectiveness than the commonly used baseline models
    corecore