89 research outputs found

    Deterministic polynomial factoring over finite fields: A uniform approach via P-schemes

    Get PDF
    We introduce a family of combinatorial objects called P-schemes, where P is a collection of subgroups of a finite group G. A P-scheme is a collection of partitions of right coset spaces H\G, indexed by H ∈ P, that satisfies a list of axioms. These objects generalize the classical notion of association schemes as well as m-schemes (Ivanyos et al., 2009). We apply the theory of P-schemes to deterministic polynomial factoring over finite fields: suppose f(X) ∈ Z[X] and a prime number pare given, such that f(X) :=f(X) modpfactorizes into n =deg(f)distinct linear factors over the finite field F_p. We show that, assuming the generalized Riemann hypothesis (GRH), f(X)can be completely factorized in deterministic polynomial time if the Galois group G of f(X)is an almost simple primitive permutation group on the set of roots of f(X), and the socle of Gis a subgroup of Sym(k)for kup to 2^O(√log n). This is the first deterministic polynomial-time factoring algorithm for primitive Galois groups of superpolynomial order. We prove our result by developing a generic factoring algorithm and analyzing it using P-schemes. We also show that the main results achieved by known GRH-based deterministic polynomial factoring algorithms can be derived from our generic algorithm in a uniform way. Finally, we investigate the schemes conjecturein Ivanyos et al. (2009), and formulate analogous conjectures associated with various families of permutation groups. We show that these conjectures form a hierarchy of relaxations of the original schemes conjecture, and their positive resolutions would imply deterministic polynomial-time factoring algorithms for various families of Galois groups under GRH

    A Cup Product in the Galois Cohomology of Number Fields

    Full text link
    Let K be a number field containing the group of n-th roots of unity and S a set of primes of K including all those dividing n and all real archimedean places. We consider the cup product on the first Galois cohomology group of the maximal S-ramified extension of K with coefficients in n-th roots of unity, which yields a pairing on a subgroup of the multiplicative group of K containing the S-units. In this general situation, we determine a formula for the cup product of two elements which pair trivially at all local places. Our primary focus is the case that K is the cyclotomic field of p-th roots of unity for n = p an odd prime and S consists of the unique prime above p in K. We describe a formula for this cup product in the case that one element is a p-th root of unity. We explain a conjectural calculation of the restriction of the cup product to p-units for all p < 10,000 and conjecture its surjectivity for all p satisfying Vandiver's conjecture. We prove this for the smallest irregular prime p = 37, via a computation related to the Galois module structure of p-units in the unramified extension of K of degree p. We describe a number of applications: to a product map in K-theory, to the structure of S-class groups in Kummer extensions of K, to relations in the Galois group of the maximal pro-p extension of K unramified outside p, to relations in the graded Z_p-Lie algebra associated to the representation of the absolute Galois group of Q in the outer automorphism group of the pro-p fundamental group of P^1 minus three points, and to Greenberg's pseudo-nullity conjecture.Comment: final versio

    Landauer's principle as a special case of Galois connection

    Full text link
    It is demonstrated how to construct a Galois connection between two related systems with entropy. The construction, called the Landauer's connection, describes coupling between two systems with entropy. It is straightforward and transfers changes in one system to the other one preserving ordering structure induced by entropy. The Landauer's connection simplifies the description of the classical Landauer's principle for computational systems. Categorification and generalization of the Landauer's principle opens area of modelling of various systems in presence of entropy in abstract terms.Comment: 24 pages, 3 figure

    Galois Theory for H-extensions and H-coextensions

    Full text link
    We show that there exists a Galois correspondence between subalgebras of an H-comodule algebra A over a base ring R and generalised quotients of a Hopf algebra H. We also show that Q-Galois subextensions are closed elements of the constructed Galois connection. Then we consider the theory of coextensions of H-module coalgebras. We construct Galois theory for them and we prove that H-Galois coextensions are closed. We apply the obtained results to the Hopf algebra itself and we show a simple proof that there is a bijection correspondence between right ideal coideals of H and its left coideal subalgebras when H is finite dimensional. Furthermore we formulate necessary and sufficient conditions when the Galois correspondence is a bijection for arbitrary Hopf algebras. We also present new conditions for closedness of subalgebras and generalised quotients when A is a crossed product.Comment: Left admissibility for subalgebras changed, an assumption added to Theorem 4.7 (A^{op} is H^{op}-Galois) and proof of Theorem 4.7 adde

    Deterministic polynomial factoring over finite fields: A uniform approach via P-schemes

    Get PDF
    We introduce a family of combinatorial objects called P-schemes, where P is a collection of subgroups of a finite group G. A P-scheme is a collection of partitions of right coset spaces H\G, indexed by H ∈ P, that satisfies a list of axioms. These objects generalize the classical notion of association schemes as well as m-schemes (Ivanyos et al., 2009). We apply the theory of P-schemes to deterministic polynomial factoring over finite fields: suppose f(X) ∈ Z[X] and a prime number pare given, such that f(X) :=f(X) modpfactorizes into n =deg(f)distinct linear factors over the finite field F_p. We show that, assuming the generalized Riemann hypothesis (GRH), f(X)can be completely factorized in deterministic polynomial time if the Galois group G of f(X)is an almost simple primitive permutation group on the set of roots of f(X), and the socle of Gis a subgroup of Sym(k)for kup to 2^O(√log n). This is the first deterministic polynomial-time factoring algorithm for primitive Galois groups of superpolynomial order. We prove our result by developing a generic factoring algorithm and analyzing it using P-schemes. We also show that the main results achieved by known GRH-based deterministic polynomial factoring algorithms can be derived from our generic algorithm in a uniform way. Finally, we investigate the schemes conjecturein Ivanyos et al. (2009), and formulate analogous conjectures associated with various families of permutation groups. We show that these conjectures form a hierarchy of relaxations of the original schemes conjecture, and their positive resolutions would imply deterministic polynomial-time factoring algorithms for various families of Galois groups under GRH

    P-Schemes and Deterministic Polynomial Factoring Over Finite Fields

    Get PDF
    We introduce a family of mathematical objects called P-schemes, where P is a poset of subgroups of a finite group G. A P-scheme is a collection of partitions of the right coset spaces H\G, indexed by H∈P, that satisfies a list of axioms. These objects generalize the classical notion of association schemes [BI84] as well as the notion of m-schemes [IKS09]. Based on P-schemes, we develop a unifying framework for the problem of deterministic factoring of univariate polynomials over finite field under the generalized Riemann hypothesis (GRH). More specifically, our results include the following: We show an equivalence between m-scheme as introduced in [IKS09] and P-schemes in the special setting that G is an multiply transitive permutation group and P is a poset of pointwise stabilizers, and therefore realize the theory of m-schemes as part of the richer theory of P-schemes. We give a generic deterministic algorithm that computes the factorization of the input polynomial ƒ(X) ∈ Fq[X] given a "lifted polynomial" ƒ~(X) of ƒ(X) and a collection F of "effectively constructible" subfields of the splitting field of ƒ~(X) over a certain base field. It is routine to compute ƒ~(X) from ƒ(X) by lifting the coefficients of ƒ(X) to a number ring. The algorithm then successfully factorizes ƒ(X) under GRH in time polynomial in the size of ƒ~(X) and F, provided that a certain condition concerning P-schemes is satisfied, for P being the poset of subgroups of the Galois group G of ƒ~(X) defined by F via the Galois correspondence. By considering various choices of G, P and verifying the condition, we are able to derive the main results of known (GRH-based) deterministic factoring algorithms [Hua91a; Hua91b; Ron88; Ron92; Evd92; Evd94; IKS09] from our generic algorithm in a uniform way. We investigate the schemes conjecture in [IKS09] and formulate analogous conjectures associated with various families of permutation groups, each of which has applications on deterministic polynomial factoring. Using a technique called induction of P-schemes, we establish reductions among these conjectures and show that they form a hierarchy of relaxations of the original schemes conjecture. We connect the complexity of deterministic polynomial factoring with the complexity of the Galois group G of ƒ~(X). Specifically, using techniques from permutation group theory, we obtain a (GRH-based) deterministic factoring algorithm whose running time is bounded in terms of the noncyclic composition factors of G. In particular, this algorithm runs in polynomial time if G is in Γk for some k=2O(√(log n), where Γk denotes the family of finite groups whose noncyclic composition factors are all isomorphic of subgroups of the symmetric group of degree k. Previously, polynomial-time algorithms for Γk were known only for bounded k. We discuss various aspects of the theory of P-schemes, including techniques of constructing new P-schemes from old ones, P-schemes for symmetric groups and linear groups, orbit P-schemes, etc. For the closely related theory of m-schemes, we provide explicit constructions of strongly antisymmetric homogeneous m-schemes for m≤3. We also show that all antisymmetric homogeneous orbit 3-schemes have a matching for m≥3, improving a result in [IKS09] that confirms the same statement for m≥4. In summary, our framework reduces the algorithmic problem of deterministic polynomial factoring over finite fields to a combinatorial problem concerning P-schemes, allowing us to not only recover most of the known results but also discover new ones. We believe progress in understanding P-schemes associated with various families of permutation groups will shed some light on the ultimate goal of solving deterministic polynomial factoring over finite fields in polynomial time.</p
    • …
    corecore