3,399 research outputs found

    Renormalization, isogenies and rational symmetries of differential equations

    Full text link
    We give an example of infinite order rational transformation that leaves a linear differential equation covariant. This example can be seen as a non-trivial but still simple illustration of an exact representation of the renormalization group.Comment: 36 page

    Evaluating single-scale and/or non-planar diagrams by differential equations

    Get PDF
    We apply a recently suggested new strategy to solve differential equations for Feynman integrals. We develop this method further by analyzing asymptotic expansions of the integrals. We argue that this allows the systematic application of the differential equations to single-scale Feynman integrals. Moreover, the information about singular limits significantly simplifies finding boundary constants for the differential equations. To illustrate these points we consider two families of three-loop integrals. The first are form-factor integrals with two external legs on the light cone. We introduce one more scale by taking one more leg off-shell, p22≠0p_2^2\neq 0. We analytically solve the differential equations for the master integrals in a Laurent expansion in dimensional regularization with ϵ=(4−D)/2\epsilon=(4-D)/2. Then we show how to obtain analytic results for the corresponding one-scale integrals in an algebraic way. An essential ingredient of our method is to match solutions of the differential equations in the limit of small p22p_2^2 to our results at p22≠0p_2^2\neq 0 and to identify various terms in these solutions according to expansion by regions. The second family consists of four-point non-planar integrals with all four legs on the light cone. We evaluate, by differential equations, all the master integrals for the so-called K4K_4 graph consisting of four external vertices which are connected with each other by six lines. We show how the boundary constants can be fixed with the help of the knowledge of the singular limits. We present results in terms of harmonic polylogarithms for the corresponding seven master integrals with six propagators in a Laurent expansion in ϵ\epsilon up to weight six.Comment: 27 pages, 2 figure

    Quantum discord for general two--qubit states: Analytical progress

    Full text link
    We present a reliable algorithm to evaluate quantum discord for general two--qubit states, amending and extending an approach recently put forward for the subclass of X--states. A closed expression for the discord of arbitrary states of two qubits cannot be obtained, as the optimization problem for the conditional entropy requires the solution to a pair of transcendental equations in the state parameters. We apply our algorithm to run a numerical comparison between quantum discord and an alternative, computable measure of non-classical correlations, namely the geometric discord. We identify the extremally non-classically correlated two--qubit states according to the (normalized) geometric discord, at fixed value of the conventional quantum discord. The latter cannot exceed the square root of the former for systems of two qubits.Comment: 8 pages, 2 figure
    • …
    corecore