208 research outputs found

    Revisiting the Complexity of Stability of Continuous and Hybrid Systems

    Full text link
    We develop a framework to give upper bounds on the "practical" computational complexity of stability problems for a wide range of nonlinear continuous and hybrid systems. To do so, we describe stability properties of dynamical systems using first-order formulas over the real numbers, and reduce stability problems to the delta-decision problems of these formulas. The framework allows us to obtain a precise characterization of the complexity of different notions of stability for nonlinear continuous and hybrid systems. We prove that bounded versions of the stability problems are generally decidable, and give upper bounds on their complexity. The unbounded versions are generally undecidable, for which we give upper bounds on their degrees of unsolvability

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    Complexity of stability and controllability of elementary hybrid systems

    Get PDF
    Caption title.Includes bibliographical references (p. 16-18).Supported by ARO. DAAL-03-92-G-0115 Supported by NATO. CRG-961115Vincent D. Blondel, John N. Tsitsiklis

    Proving Abstractions of Dynamical Systems through Numerical Simulations

    Full text link
    A key question that arises in rigorous analysis of cyberphysical systems under attack involves establishing whether or not the attacked system deviates significantly from the ideal allowed behavior. This is the problem of deciding whether or not the ideal system is an abstraction of the attacked system. A quantitative variation of this question can capture how much the attacked system deviates from the ideal. Thus, algorithms for deciding abstraction relations can help measure the effect of attacks on cyberphysical systems and to develop attack detection strategies. In this paper, we present a decision procedure for proving that one nonlinear dynamical system is a quantitative abstraction of another. Directly computing the reach sets of these nonlinear systems are undecidable in general and reach set over-approximations do not give a direct way for proving abstraction. Our procedure uses (possibly inaccurate) numerical simulations and a model annotation to compute tight approximations of the observable behaviors of the system and then uses these approximations to decide on abstraction. We show that the procedure is sound and that it is guaranteed to terminate under reasonable robustness assumptions

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree d\leq d, or (ii) a polytopic Lyapunov function with d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls

    ECC 2018 Workshop Proposal

    Get PDF

    The explanation game: a formal framework for interpretable machine learning

    Get PDF
    We propose a formal framework for interpretable machine learning. Combining elements from statistical learning, causal interventionism, and decision theory, we design an idealised explanation game in which players collaborate to find the best explanation(s) for a given algorithmic prediction. Through an iterative procedure of questions and answers, the players establish a three-dimensional Pareto frontier that describes the optimal trade-offs between explanatory accuracy, simplicity, and relevance. Multiple rounds are played at different levels of abstraction, allowing the players to explore overlapping causal patterns of variable granularity and scope. We characterise the conditions under which such a game is almost surely guaranteed to converge on a (conditionally) optimal explanation surface in polynomial time, and highlight obstacles that will tend to prevent the players from advancing beyond certain explanatory thresholds. The game serves a descriptive and a normative function, establishing a conceptual space in which to analyse and compare existing proposals, as well as design new and improved solutions

    On the algorithmic unsolvability of some stability problems forhybrid systems

    Get PDF
    We define two stability problems for a class of hybrid systems containing asynchronous iterative processes and prove these problems are algorithmically unsolvable. Furthermore, we also show some reachability problems for asynchronous iterative processes are algorithmically unsolvabl
    corecore