93 research outputs found

    Parameterized Complexity of Quantum Knot Invariants

    Get PDF
    We give a general fixed parameter tractable algorithm to compute quantum invariants of links presented by planar diagrams, whose complexity is singly exponential in the carving-width (or the tree-width) of the diagram. In particular, we get a O(N^{3/2 cw} poly(n)) ? N^O(?n) time algorithm to compute any Reshetikhin-Turaev invariant - derived from a simple Lie algebra ? - of a link presented by a planar diagram with n crossings and carving-width cw, and whose components are coloured with ?-modules of dimension at most N. For example, this includes the N^{th}-coloured Jones polynomial

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164

    Graphs determined by polynomial invariants

    Get PDF
    AbstractMany polynomials have been defined associated to graphs, like the characteristic, matchings, chromatic and Tutte polynomials. Besides their intrinsic interest, they encode useful combinatorial information about the given graph. It is natural then to ask to what extent any of these polynomials determines a graph and, in particular, whether one can find graphs that can be uniquely determined by a given polynomial. In this paper we survey known results in this area and, at the same time, we present some new results

    How I got to like graph polynomials

    Full text link
    For Boris Zilber on his 75th birthday. I trace the roots of my collaboration with Boris Zilber, which combines categoricity theory, finite model theory, algorithmics, and combinatorics.Comment: 11 page

    A Little Statistical Mechanics for the Graph Theorist

    Get PDF
    In this survey, we give a friendly introduction from a graph theory perspective to the q-state Potts model, an important statistical mechanics tool for analyzing complex systems in which nearest neighbor interactions determine the aggregate behavior of the system. We present the surprising equivalence of the Potts model partition function and one of the most renowned graph invariants, the Tutte polynomial, a relationship that has resulted in a remarkable synergy between the two fields of study. We highlight some of these interconnections, such as computational complexity results that have alternated between the two fields. The Potts model captures the effect of temperature on the system and plays an important role in the study of thermodynamic phase transitions. We discuss the equivalence of the chromatic polynomial and the zero-temperature antiferromagnetic partition function, and how this has led to the study of the complex zeros of these functions. We also briefly describe Monte Carlo simulations commonly used for Potts model analysis of complex systems. The Potts model has applications as widely varied as magnetism, tumor migration, foam behaviors, and social demographics, and we provide a sampling of these that also demonstrates some variations of the Potts model. We conclude with some current areas of investigation that emphasize graph theoretic approaches. This paper is an elementary general audience survey, intended to popularize the area and provide an accessible first point of entry for further exploration.Comment: 30 pages, 3 figure

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    A Dichotomy Theorem for Polynomial Evaluation

    Get PDF
    A dichotomy theorem for counting problems due to Creignou and Hermann states that or any nite set S of logical relations, the counting problem #SAT(S) is either in FP, or #P-complete. In the present paper we show a dichotomy theorem for polynomial evaluation. That is, we show that for a given set S, either there exists a VNP-complete family of polynomials associated to S, or the associated families of polynomials are all in VP. We give a concise characterization of the sets S that give rise to "easy" and "hard" polynomials. We also prove that several problems which were known to be #P-complete under Turing reductions only are in fact #P-complete under many-one reductions
    • …
    corecore