57,487 research outputs found

    Sample path properties of the stochastic flows

    Get PDF
    We consider a stochastic flow driven by a finite-dimensional Brownian motion. We show that almost every realization of such a flow exhibits strong statistical properties such as the exponential convergence of an initial measure to the equilibrium state and the central limit theorem. The proof uses new estimates of the mixing rates of the multi-point motion

    Bandlimited Spatial Field Sampling with Mobile Sensors in the Absence of Location Information

    Full text link
    Sampling of physical fields with mobile sensor is an emerging area. In this context, this work introduces and proposes solutions to a fundamental question: can a spatial field be estimated from samples taken at unknown sampling locations? Unknown sampling location, sample quantization, unknown bandwidth of the field, and presence of measurement-noise present difficulties in the process of field estimation. In this work, except for quantization, the other three issues will be tackled together in a mobile-sampling framework. Spatially bandlimited fields are considered. It is assumed that measurement-noise affected field samples are collected on spatial locations obtained from an unknown renewal process. That is, the samples are obtained on locations obtained from a renewal process, but the sampling locations and the renewal process distribution are unknown. In this unknown sampling location setup, it is shown that the mean-squared error in field estimation decreases as O(1/n)O(1/n) where nn is the average number of samples collected by the mobile sensor. The average number of samples collected is determined by the inter-sample spacing distribution in the renewal process. An algorithm to ascertain spatial field's bandwidth is detailed, which works with high probability as the average number of samples nn increases. This algorithm works in the same setup, i.e., in the presence of measurement-noise and unknown sampling locations.Comment: Submitted to IEEE Trans on Signal Processin

    Statistics of soliton-bearing systems with additive noise

    Full text link
    We present a consistent method to calculate the probability distribution of soliton parameters in systems with additive noise. Even though a weak noise is considered, we are interested in probabilities of large fluctuations (generally non-Gaussian) which are beyond perturbation theory. Our method is a further development of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve a fundamental problem of soliton statistics governing by noisy Nonlinear Schr\"odinger Equation (NSE). We then apply our method to optical soliton transmission systems using signal control elements (filters, amplitude and phase modulators).Comment: 4 pages. Submitted to PR
    corecore