21,170 research outputs found

    Serving Online Requests with Mobile Servers

    Full text link
    We study an online problem in which a set of mobile servers have to be moved in order to efficiently serve a set of requests that arrive in an online fashion. More formally, there is a set of nn nodes and a set of kk mobile servers that are placed at some of the nodes. Each node can potentially host several servers and the servers can be moved between the nodes. There are requests 1,2,…1,2,\ldots that are adversarially issued at nodes one at a time. An issued request at time tt needs to be served at all times t′≥tt' \geq t. The cost for serving the requests is a function of the number of servers and requests at the different nodes. The requirements on how to serve the requests are governed by two parameters α≥1\alpha\geq 1 and β≥0\beta\geq 0. An algorithm needs to guarantee at all times that the total service cost remains within a multiplicative factor of α\alpha and an additive term β\beta of the current optimal service cost. We consider online algorithms for two different minimization objectives. We first consider the natural problem of minimizing the total number of server movements. We show that in this case for every kk, the competitive ratio of every deterministic online algorithm needs to be at least Ω(n)\Omega(n). Given this negative result, we then extend the minimization objective to also include the current service cost. We give almost tight bounds on the competitive ratio of the online problem where one needs to minimize the sum of the total number of movements and the current service cost. In particular, we show that at the cost of an additional additive term which is roughly linear in kk, it is possible to achieve a multiplicative competitive ratio of 1+ε1+\varepsilon for every constant ε>0\varepsilon>0.Comment: 25 page

    Communication-efficient Distributed Multi-resource Allocation

    Full text link
    In several smart city applications, multiple resources must be allocated among competing agents that are coupled through such shared resources and are constrained --- either through limitations of communication infrastructure or privacy considerations. We propose a distributed algorithm to solve such distributed multi-resource allocation problems with no direct inter-agent communication. We do so by extending a recently introduced additive-increase multiplicative-decrease (AIMD) algorithm, which only uses very little communication between the system and agents. Namely, a control unit broadcasts a one-bit signal to agents whenever one of the allocated resources exceeds capacity. Agents then respond to this signal in a probabilistic manner. In the proposed algorithm, each agent makes decision of its resource demand locally and an agent is unaware of the resource allocation of other agents. In empirical results, we observe that the average allocations converge over time to optimal allocations.Comment: To appear in IEEE International Smart Cities Conference (ISC2 2018), Kansas City, USA, September, 2018. arXiv admin note: substantial text overlap with arXiv:1711.0197

    XONN: XNOR-based Oblivious Deep Neural Network Inference

    Get PDF
    Advancements in deep learning enable cloud servers to provide inference-as-a-service for clients. In this scenario, clients send their raw data to the server to run the deep learning model and send back the results. One standing challenge in this setting is to ensure the privacy of the clients' sensitive data. Oblivious inference is the task of running the neural network on the client's input without disclosing the input or the result to the server. This paper introduces XONN, a novel end-to-end framework based on Yao's Garbled Circuits (GC) protocol, that provides a paradigm shift in the conceptual and practical realization of oblivious inference. In XONN, the costly matrix-multiplication operations of the deep learning model are replaced with XNOR operations that are essentially free in GC. We further provide a novel algorithm that customizes the neural network such that the runtime of the GC protocol is minimized without sacrificing the inference accuracy. We design a user-friendly high-level API for XONN, allowing expression of the deep learning model architecture in an unprecedented level of abstraction. Extensive proof-of-concept evaluation on various neural network architectures demonstrates that XONN outperforms prior art such as Gazelle (USENIX Security'18) by up to 7x, MiniONN (ACM CCS'17) by 93x, and SecureML (IEEE S&P'17) by 37x. State-of-the-art frameworks require one round of interaction between the client and the server for each layer of the neural network, whereas, XONN requires a constant round of interactions for any number of layers in the model. XONN is first to perform oblivious inference on Fitnet architectures with up to 21 layers, suggesting a new level of scalability compared with state-of-the-art. Moreover, we evaluate XONN on four datasets to perform privacy-preserving medical diagnosis.Comment: To appear in USENIX Security 201
    • …
    corecore