23,061 research outputs found

    Interference Networks with Point-to-Point Codes

    Full text link
    The paper establishes the capacity region of the Gaussian interference channel with many transmitter-receiver pairs constrained to use point-to-point codes. The capacity region is shown to be strictly larger in general than the achievable rate regions when treating interference as noise, using successive interference cancellation decoding, and using joint decoding. The gains in coverage and achievable rate using the optimal decoder are analyzed in terms of ensemble averages using stochastic geometry. In a spatial network where the nodes are distributed according to a Poisson point process and the channel path loss exponent is β>2\beta > 2, it is shown that the density of users that can be supported by treating interference as noise can scale no faster than B2/βB^{2/\beta} as the bandwidth BB grows, while the density of users can scale linearly with BB under optimal decoding

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201

    Compute-and-Forward: Harnessing Interference through Structured Codes

    Get PDF
    Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.Comment: IEEE Trans. Info Theory, to appear. 23 pages, 13 figure

    Cooperative Compute-and-Forward

    Full text link
    We examine the benefits of user cooperation under compute-and-forward. Much like in network coding, receivers in a compute-and-forward network recover finite-field linear combinations of transmitters' messages. Recovery is enabled by linear codes: transmitters map messages to a linear codebook, and receivers attempt to decode the incoming superposition of signals to an integer combination of codewords. However, the achievable computation rates are low if channel gains do not correspond to a suitable linear combination. In response to this challenge, we propose a cooperative approach to compute-and-forward. We devise a lattice-coding approach to block Markov encoding with which we construct a decode-and-forward style computation strategy. Transmitters broadcast lattice codewords, decode each other's messages, and then cooperatively transmit resolution information to aid receivers in decoding the integer combinations. Using our strategy, we show that cooperation offers a significant improvement both in the achievable computation rate and in the diversity-multiplexing tradeoff.Comment: submitted to IEEE Transactions on Information Theor

    Sub-optimality of Treating Interference as Noise in the Cellular Uplink

    Full text link
    Despite the simplicity of the scheme of treating interference as noise (TIN), it was shown to be sum-capacity optimal in the Gaussian 2-user interference channel in \cite{ShangKramerChen,MotahariKhandani,AnnapureddyVeeravalli}. In this paper, an interference network consisting of a point-to-point channel interfering with a multiple access channel (MAC) is considered, with focus on the weak interference scenario. Naive TIN in this network is performed by using Gaussian codes at the transmitters, joint decoding at the MAC receiver while treating interference as noise, and single user decoding at the point-to-point receiver while treating both interferers as noise. It is shown that this naive TIN scheme is never optimal in this scenario. In fact, a scheme that combines both time division multiple access and TIN outperforms the naive TIN scheme. An upper bound on the sum-capacity of the given network is also derived.Comment: 5 pages, 3 figures, typos correcte
    corecore