492 research outputs found

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    DMT Optimal Cooperative Protocols with Destination-Based Selection of the Best Relay

    Get PDF
    We design a cooperative protocol in the context of wireless mesh networks in order to increase the reliability of wireless links. Destination terminals ask for cooperation when they fail in decoding data frames transmitted by source terminals. In that case, each destination terminal D calls a specific relay terminal B with a signaling frame to help its transmission with source terminal S. To select appropriate relays, destination terminals maintain tables of relay terminals, one for each possible source address. These tables are constituted by passively overhearing ongoing transmissions. Hence, when cooperation is needed between S and D, and when a relay B is found by terminal D in the relay table associated with terminal S, the destination terminal sends a negative acknowledgment frame that contains the address of B. When the best relay B has successfully decoded the source message, it sends a copy of the data frame to D using a selective decode-andforward transmission scheme. The on-demand approach allows maximization of the spatial multiplexing gain and the cooperation of the best relay allows maximization of the spatial diversity order. Hence, the proposed protocol achieves optimal diversitymultiplexing trade-off performance. Moreover, this performance is achieved through a collision-free selection process
    corecore