35,197 research outputs found

    Spectrally accurate space-time solution of Hamiltonian PDEs

    Full text link
    Recently, the numerical solution of multi-frequency, highly-oscillatory Hamiltonian problems has been attacked by using Hamiltonian Boundary Value Methods (HBVMs) as spectral methods in time. When the problem derives from the space semi- discretization of (possibly Hamiltonian) partial differential equations (PDEs), the resulting problem may be stiffly-oscillatory, rather than highly-oscillatory. In such a case, a different implementation of the methods is needed, in order to gain the maximum efficiency.Comment: 17 pages, 3 figure

    Finite volume methods for unidirectional dispersive wave models

    Get PDF
    We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular we consider a KdV-BBM type equation. Explicit and IMEX Runge-Kutta type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves and their various interactions.Comment: 25 pages, 12 figures, 51 references. Other authors papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    A dissipative algorithm for wave-like equations in the characteristic formulation

    Get PDF
    We present a dissipative algorithm for solving nonlinear wave-like equations when the initial data is specified on characteristic surfaces. The dissipative properties built in this algorithm make it particularly useful when studying the highly nonlinear regime where previous methods have failed to give a stable evolution in three dimensions. The algorithm presented in this work is directly applicable to hyperbolic systems proper of Electromagnetism, Yang-Mills and General Relativity theories. We carry out an analysis of the stability of the algorithm and test its properties with linear waves propagating on a Minkowski background and the scattering off a Scwharszchild black hole in General Relativity.Comment: 23 pages, 7 figure

    Immersed Boundary Smooth Extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods

    Full text link
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers', and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Finite volume methods for unidirectional dispersive wave model

    Get PDF
    We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular, we consider a KdV–BBM-type equation. Explicit and implicit–explicit Runge–Kutta-type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants’ conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves, and their various interaction
    • 

    corecore