381 research outputs found

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515

    If it ain’t broke, don’t fix it : An Abductive and Contextual Exploration of Maintenance Deferral

    Get PDF
    Objective: To create academic insights into how organisations approach and manage the maintenance of vendor-supplied information systems software. Approach: Three iterations of the Peircean Abduction methodology lead to the identification, conceptualisation, and application of new knowledge in vendor-supplied Information Systems (IS) maintenance deferral by means of undertaking a qualitative multiple-case study. The research goals are achieved through the appropriation and application of theories from Peircean Abduction and Systemic Functional Linguistics. Research questions: The following abductive statement is created through the application of the Peircean Abduction methodology: The surprising observation, “some organisations, having invested in a vendor-supplied IS software solution, defer the implementation of vendor-supplied maintenance”, is made; However, if “the existence of deterrents to maintenance, requiring a trigger event before the implementation of maintenance” were true, then “maintenance deferral” would be a matter of course. Hence there is a reason to suspect that “the existence of both deterrents, and of triggers” is true. From this abductive statement, three research questions are deduced. The first research question investigates the existence, characteristics and influence of deterrents; the second question investigates the existence, characteristics and influence of triggers. As a consequence of this approach, the final question provides a general understanding of IS maintenance deferral. Methodology: Following the implementation of a systematic literature review methodology, six themes are identified: 1. an acknowledgement that problems exist when considering vendor-supplied software maintenance; 2. deterrents as a driver in behaviour; 3. the occurrence of tipping-points which require vendor-supplied maintenance to be undertaken; 4. the consequences of deferral; 5. the value of maintenance; and 6. the formalisation of a maintenance lifecycle. Taking the insights arising from the systematic literature review, a multiple-case study following the pragmatic framework is constructed from data collected interviewing twelve participants across a diverse set of ten organisations. An abductive approach to this research topic creates opportunities for a comprehensive, well-grounded exploratory contribution to a scarcely investigated research domain. Major findings: The translation of Peircean abduction to an interpretative context generates a rich and substantive contribution to theory and practice. The existence of both deterrents and triggers are strongly supported, leading to the conclusion that maintenance deferral is a matter of course. The development of a new abductive and Systemic Functional Linguistic model enhances the knowledge of maintenance deferral and allows refinement of historical IS maintenance models. Finally, the application of Systems Thinking situates insights from the application of their mode within their respective organisational environments

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Improving National and Homeland Security through a proposed Laboratory for nformation Globalization and Harmonization Technologies (LIGHT)

    Get PDF
    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access tools to enable interoperation with other databases and the extraction of meaningful and timely information" [NRC02, p.304, emphasis added] That sentence succinctly describes the objectives of this project. Improved access and use of information are essential to better identify and anticipate threats, protect against and respond to threats, and enhance national and homeland security (NHS), as well as other national priority areas, such as Economic Prosperity and a Vibrant Civil Society (ECS) and Advances in Science and Engineering (ASE). This project focuses on the creation and contributions of a Laboratory for Information Globalization and Harmonization Technologies (LIGHT) with two interrelated goals: (1) Theory and Technologies: To research, design, develop, test, and implement theory and technologies for improving the reliability, quality, and responsiveness of automated mechanisms for reasoning and resolving semantic differences that hinder the rapid and effective integration (int) of systems and data (dmc) across multiple autonomous sources, and the use of that information by public and private agencies involved in national and homeland security and the other national priority areas involving complex and interdependent social systems (soc). This work builds on our research on the COntext INterchange (COIN) project, which focused on the integration of diverse distributed heterogeneous information sources using ontologies, databases, context mediation algorithms, and wrapper technologies to overcome information representational conflicts. The COIN approach makes it substantially easier and more transparent for individual receivers (e.g., applications, users) to access and exploit distributed sources. Receivers specify their desired context to reduce ambiguities in the interpretation of information coming from heterogeneous sources. This approach significantly reduces the overhead involved in the integration of multiple sources, improves data quality, increases the speed of integration, and simplifies maintenance in an environment of changing source and receiver context - which will lead to an effective and novel distributed information grid infrastructure. This research also builds on our Global System for Sustainable Development (GSSD), an Internet platform for information generation, provision, and integration of multiple domains, regions, languages, and epistemologies relevant to international relations and national security. (2) National Priority Studies: To experiment with and test the developed theory and technologies on practical problems of data integration in national priority areas. Particular focus will be on national and homeland security, including data sources about conflict and war, modes of instability and threat, international and regional demographic, economic, and military statistics, money flows, and contextualizing terrorism defense and response. Although LIGHT will leverage the results of our successful prior research projects, this will be the first research effort to simultaneously and effectively address ontological and temporal information conflicts as well as dramatically enhance information quality. Addressing problems of national priorities in such rapidly changing complex environments requires extraction of observations from disparate sources, using different interpretations, at different points in times, for different purposes, with different biases, and for a wide range of different uses and users. This research will focus on integrating information both over individual domains and across multiple domains. Another innovation is the concept and implementation of Collaborative Domain Spaces (CDS), within which applications in a common domain can share, analyze, modify, and develop information. Applications also can span multiple domains via Linked CDSs. The PIs have considerable experience with these research areas and the organization and management of such large scale international and diverse research projects. The PIs come from three different Schools at MIT: Management, Engineering, and Humanities, Arts & Social Sciences. The faculty and graduate students come from about a dozen nationalities and diverse ethnic, racial, and religious backgrounds. The currently identified external collaborators come from over 20 different organizations and many different countries, industrial as well as developing. Specific efforts are proposed to engage even more women, underrepresented minorities, and persons with disabilities. The anticipated results apply to any complex domain that relies on heterogeneous distributed data to address and resolve compelling problems. This initiative is supported by international collaborators from (a) scientific and research institutions, (b) business and industry, and (c) national and international agencies. Research products include: a System for Harmonized Information Processing (SHIP), a software platform, and diverse applications in research and education which are anticipated to significantly impact the way complex organizations, and society in general, understand and manage critical challenges in NHS, ECS, and ASE

    Improving National and Homeland Security through a proposed Laboratory for Information Globalization and Harmonization Technologies (LIGHT)

    Get PDF
    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access tools to enable interoperation with other databases and the extraction of meaningful and timely information" [NRC02, p.304, emphasis added] That sentence succinctly describes the objectives of this project. Improved access and use of information are essential to better identify and anticipate threats, protect against and respond to threats, and enhance national and homeland security (NHS), as well as other national priority areas, such as Economic Prosperity and a Vibrant Civil Society (ECS) and Advances in Science and Engineering (ASE). This project focuses on the creation and contributions of a Laboratory for Information Globalization and Harmonization Technologies (LIGHT) with two interrelated goals: (1) Theory and Technologies: To research, design, develop, test, and implement theory and technologies for improving the reliability, quality, and responsiveness of automated mechanisms for reasoning and resolving semantic differences that hinder the rapid and effective integration (int) of systems and data (dmc) across multiple autonomous sources, and the use of that information by public and private agencies involved in national and homeland security and the other national priority areas involving complex and interdependent social systems (soc). This work builds on our research on the COntext INterchange (COIN) project, which focused on the integration of diverse distributed heterogeneous information sources using ontologies, databases, context mediation algorithms, and wrapper technologies to overcome information representational conflicts. The COIN approach makes it substantially easier and more transparent for individual receivers (e.g., applications, users) to access and exploit distributed sources. Receivers specify their desired context to reduce ambiguities in the interpretation of information coming from heterogeneous sources. This approach significantly reduces the overhead involved in the integration of multiple sources, improves data quality, increases the speed of integration, and simplifies maintenance in an environment of changing source and receiver context - which will lead to an effective and novel distributed information grid infrastructure. This research also builds on our Global System for Sustainable Development (GSSD), an Internet platform for information generation, provision, and integration of multiple domains, regions, languages, and epistemologies relevant to international relations and national security. (2) National Priority Studies: To experiment with and test the developed theory and technologies on practical problems of data integration in national priority areas. Particular focus will be on national and homeland security, including data sources about conflict and war, modes of instability and threat, international and regional demographic, economic, and military statistics, money flows, and contextualizing terrorism defense and response. Although LIGHT will leverage the results of our successful prior research projects, this will be the first research effort to simultaneously and effectively address ontological and temporal information conflicts as well as dramatically enhance information quality. Addressing problems of national priorities in such rapidly changing complex environments requires extraction of observations from disparate sources, using different interpretations, at different points in times, for different purposes, with different biases, and for a wide range of different uses and users. This research will focus on integrating information both over individual domains and across multiple domains. Another innovation is the concept and implementation of Collaborative Domain Spaces (CDS), within which applications in a common domain can share, analyze, modify, and develop information. Applications also can span multiple domains via Linked CDSs. The PIs have considerable experience with these research areas and the organization and management of such large scale international and diverse research projects. The PIs come from three different Schools at MIT: Management, Engineering, and Humanities, Arts & Social Sciences. The faculty and graduate students come from about a dozen nationalities and diverse ethnic, racial, and religious backgrounds. The currently identified external collaborators come from over 20 different organizations and many different countries, industrial as well as developing. Specific efforts are proposed to engage even more women, underrepresented minorities, and persons with disabilities. The anticipated results apply to any complex domain that relies on heterogeneous distributed data to address and resolve compelling problems. This initiative is supported by international collaborators from (a) scientific and research institutions, (b) business and industry, and (c) national and international agencies. Research products include: a System for Harmonized Information Processing (SHIP), a software platform, and diverse applications in research and education which are anticipated to significantly impact the way complex organizations, and society in general, understand and manage critical challenges in NHS, ECS, and ASE

    自然言語談話解析のための大規模かつ学習可能な仮説推論に関する研究

    Get PDF
    Tohoku University乾健太郎課

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results
    corecore