34,285 research outputs found

    Direct numerical simulation of bubble-bubble and droplet-droplet interaction using a Surface Thin Film model

    Get PDF
    This dissertation deals with the simulation of dispersed multiphase flow. The particle-particle and particle-fluid interactions in this class of flows play an important role on the hydrodynamics and fluid transport phenomena that govern the overall flow behaviour. Accurate computational modelling of the particle-particle and particle- fluid interactions is thus required to correctly model the flow. The aim of this study is to use a Direct Numerical Simulation approach based on a smoothed Volume Of Fluid method to model particle-particle interactions in a dispersed multiphase flow at a fundamental level, and employing a surface thin film model, to drastically reduce the computational effort required. A multiscale modelling approach is followed with the smoothed Volume Of Fluid simulation on the particle scale and the surface thin film model simulation on the thin- film scale. The resulting governing equations are the Navier-Stokes equations for an incompressible viscous multiphase Newtonian fluid undergoing laminar and isothermal three-dimensional flow, the interface advection equation and the reduced order surface thin film equation. The model equations are discretized using the Finite Volume Method and implemented into the open source software OpenFOAM®. The numerical solution is obtained by solving the resulting non-linear system of equations implicitly on a structured computational grid on parallel processors using a pressure correction algorithm to converge the pressure at each time step. The study is restricted to gas-liquid systems where particles could either be bubbles or droplets; rigid particles are not considered. The model is tested against experimental results from binary collision of hydrocarbon droplets. Good qualitative numerical results are obtained at a practical computational cost

    A full Eulerian finite difference approach for solving fluid-structure coupling problems

    Full text link
    A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981, J. Comput. Phys., 39, 201)), which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for nonlinear Mooney-Rivlin materials. In this paper, various verifications and validations of the present full Eulerian method, which solves the fluid and solid motions on a fixed grid, are demonstrated, and the numerical accuracy involved in the fluid-structure coupling problems is examined.Comment: 38 pages, 27 figures, accepted for publication in J. Comput. Phy

    CFD Simulation of Liquid-solid Multiphase Flow in Mud Mixer

    Get PDF
    In the present study, a computational fluid dynamics (CFD) simulation was performed to analyze the mixing phenomena associated with multi-phase flow in a mud mixing system. For the validation of CFD simulation, firstly a liquid-solid multiphase flow inside horizontal pipe was simulated and compared with the experiments and other numerical simulations. And then, the multiphase flow simulation was carried out for the mud mixer in the drilling handling system in order to understand mixing phenomena and predict the mixing efficiency. For the modeling and simulation, a commercial software, STAR-CCM+, based on a finite-volume method (FVM) was adopted. The simulation results for liquid-solid flow inside the pipe shows a good agreement with the experimental data. With the same multiphase model, the simulation for mud mixer is performed under the generalized boundary condition and then pressure drop through the mud mixer will be discussed

    Multiphase flow of immiscible fluids on unstructured moving meshes

    Get PDF
    pre-printIn this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization

    Multiphase flow of immiscible fluids on unstructured moving meshes

    Get PDF
    Figure 1: Multiple fluids with different viscosity coefficients and surface tension densities splashing on the bottom of a cylindrical container. Observe that the simulation has no problem dealing with thin sheets. In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as

    Large scale analysis of interactive behaviors of bubbles and particles in a liquid by a coupled immersed boundary and vof technique

    Full text link
    A new approach for direct numerical simulation of three-phase (gas-liquid-solid) flows is proposed. Implementation of moving rigid surface in a fluid is based on an immersed boundary/solid-object method method developed by the present authors, and gas-liquid interface is captured by volume-of-fluid (VOF) method with an interface reconstruction scheme. The proposed coupling technique enables simulation of flow structures induced by both bubble and particle of comparable sizes, including the flow pattern around the gas-liquid and solid-liquid interfaces. In a suspension of 1024 solid particles and a bubble, some typical behaviours of bubble-particle interaction and liquid flow pattern are captured. The detailed analysis on the motion of the falling particles suggests that the particle rotation is strongly influenced by the behaviours of the rising bubble, giving rise a snap reversal of the rotating directions of the particles due to the flow induced by the bubble.This is a pre-copyedited, author-produced PDF of an article accepted for publication in Multiphase Science and Technology following peer review
    corecore