12 research outputs found

    Verification and Synthesis of Symmetric Uni-Rings for Leads-To Properties

    Full text link
    This paper investigates the verification and synthesis of parameterized protocols that satisfy leadsto properties RQR \leadsto Q on symmetric unidirectional rings (a.k.a. uni-rings) of deterministic and constant-space processes under no fairness and interleaving semantics, where RR and QQ are global state predicates. First, we show that verifying RQR \leadsto Q for parameterized protocols on symmetric uni-rings is undecidable, even for deterministic and constant-space processes, and conjunctive state predicates. Then, we show that surprisingly synthesizing symmetric uni-ring protocols that satisfy RQR \leadsto Q is actually decidable. We identify necessary and sufficient conditions for the decidability of synthesis based on which we devise a sound and complete polynomial-time algorithm that takes the predicates RR and QQ, and automatically generates a parameterized protocol that satisfies RQR \leadsto Q for unbounded (but finite) ring sizes. Moreover, we present some decidability results for cases where leadsto is required from multiple distinct RR predicates to different QQ predicates. To demonstrate the practicality of our synthesis method, we synthesize some parameterized protocols, including agreement and parity protocols

    On the Limits and Practice of Automatically Designing Self-Stabilization

    Get PDF
    A protocol is said to be self-stabilizing when the distributed system executing it is guaranteed to recover from any fault that does not cause permanent damage. Designing such protocols is hard since they must recover from all possible states, therefore we investigate how feasible it is to synthesize them automatically. We show that synthesizing stabilization on a fixed topology is NP-complete in the number of system states. When a solution is found, we further show that verifying its correctness on a general topology (with any number of processes) is undecidable, even for very simple unidirectional rings. Despite these negative results, we develop an algorithm to synthesize a self-stabilizing protocol given its desired topology, legitimate states, and behavior. By analogy to shadow puppetry, where a puppeteer may design a complex puppet to cast a desired shadow, a protocol may need to be designed in a complex way that does not even resemble its specification. Our shadow/puppet synthesis algorithm addresses this concern and, using a complete backtracking search, has automatically designed 4 new self-stabilizing protocols with minimal process space requirements: 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, 3-state token passing on bidirectional chains, and 4-state orientation on daisy chains

    Parameterized synthesis of self-stabilizing protocols in symmetric networks

    Get PDF
    Self-stabilization in distributed systems is a technique to guarantee convergence to a set of legitimate states without external intervention when a transient fault or bad initialization occurs. Recently, there has been a surge of efforts in designing techniques for automated synthesis of self-stabilizing algorithms that are correct by construction. Most of these techniques, however, are not parameterized, meaning that they can only synthesize a solution for a fixed and predetermined number of processes. In this paper, we report a breakthrough in parameterized synthesis of self-stabilizing algorithms in symmetric networks, including ring, line, mesh, and torus. First, we develop cutoffs that guarantee (1) closure in legitimate states, and (2) deadlock-freedom outside the legitimate states. We also develop a sufficient condition for convergence in self-stabilizing systems. Since some of our cutoffs grow with the size of the local state space of processes, scalability of the synthesis procedure is still a problem. We address this problem by introducing a novel SMT-based technique for counterexample-guided synthesis of self-stabilizing algorithms in symmetric networks. We have fully implemented our technique and successfully synthesized solutions to maximal matching, three coloring, and maximal independent set problems for ring and line topologies

    Parameterized Synthesis of Self-Stabilizing Protocols in Symmetric Rings

    Get PDF
    Self-stabilization in distributed systems is a technique to guarantee convergence to a set of legitimate states without external intervention when a transient fault or bad initialization occurs. Recently, there has been a surge of efforts in designing techniques for automated synthesis of self-stabilizing algorithms that are correct by construction. Most of these techniques, however, are not parameterized, meaning that they can only synthesize a solution for a fixed and predetermined number of processes. In this paper, we report a breakthrough in parameterized synthesis of self-stabilizing algorithms in symmetric rings. First, we develop tight cutoffs that guarantee (1) closure in legitimate states, and (2) deadlock-freedom outside the legitimates states. We also develop a sufficient condition for convergence in silent self-stabilizing systems. Since some of our cutoffs grow with the size of local state space of processes, we also present an automated technique that significantly increases the scalability of synthesis in symmetric networks. Our technique is based on SMT-solving and incorporates a loop of synthesis and verification guided by counterexamples. We have fully implemented our technique and successfully synthesized solutions to maximal matching, three coloring, and maximal independent set problems

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    On the verification of livelock-freedom and self-stabilization on parameterized rings

    No full text
    This article investigates the verification of livelock-freedom and self-stabilization on parameterized rings consisting of symmetric, constant space, deterministic, and self-disabling processes. The results of this article have a significant impact on several fields, including scalable distributed systems, resilient and self-* systems, and verification of parameterized systems. First, we identify necessary and sufficient local conditions for the existence of global livelocks in parameterized unidirectional rings with unbounded (but finite) number of processes under the interleaving semantics. Using a reduction from the periodic domino problem, we show that, in general, verifying livelock-freedom of parameterized unidirectional rings is undecidable (specifically, Π10-complete) even for constant space, deterministic, and self-disabling processes. This result implies that verifying self-stabilization for parameterized rings of self-disabling processes is also undecidable. We also show that verifying livelock-freedom and self-stabilization remain undecidable under (1) synchronous execution semantics, (2) the FIFO consistency model, and (3) any scheduling policy. We then present a new scope-based method for detecting and constructing livelocks in parameterized rings. The proposed semi-algorithm behind our scope-based verification is based on a novel paradigm for the detection of livelocks that totally circumvents state space exploration. Our experimental results on an implementation of the proposed semi-algorithm are very promising as we have found livelocks in parameterized rings in a few microseconds on a regular laptop. The results of this article have significant implications for scalable distributed systems with cyclic topologies

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic
    corecore