12,246 research outputs found

    A Complete Generalized Adjustment Criterion

    Full text link
    Covariate adjustment is a widely used approach to estimate total causal effects from observational data. Several graphical criteria have been developed in recent years to identify valid covariates for adjustment from graphical causal models. These criteria can handle multiple causes, latent confounding, or partial knowledge of the causal structure; however, their diversity is confusing and some of them are only sufficient, but not necessary. In this paper, we present a criterion that is necessary and sufficient for four different classes of graphical causal models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion subsumes the existing ones and in this way unifies adjustment set construction for a large set of graph classes.Comment: 10 pages, 6 figures, To appear in Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI2015

    Learning Adjustment Sets from Observational and Limited Experimental Data

    Full text link
    Estimating causal effects from observational data is not always possible due to confounding. Identifying a set of appropriate covariates (adjustment set) and adjusting for their influence can remove confounding bias; however, such a set is typically not identifiable from observational data alone. Experimental data do not have confounding bias, but are typically limited in sample size and can therefore yield imprecise estimates. Furthermore, experimental data often include a limited set of covariates, and therefore provide limited insight into the causal structure of the underlying system. In this work we introduce a method that combines large observational and limited experimental data to identify adjustment sets and improve the estimation of causal effects. The method identifies an adjustment set (if possible) by calculating the marginal likelihood for the experimental data given observationally-derived prior probabilities of potential adjustmen sets. In this way, the method can make inferences that are not possible using only the conditional dependencies and independencies in all the observational and experimental data. We show that the method successfully identifies adjustment sets and improves causal effect estimation in simulated data, and it can sometimes make additional inferences when compared to state-of-the-art methods for combining experimental and observational data.Comment: 10 pages, 5 figure

    Interpreting and using CPDAGs with background knowledge

    Full text link
    We develop terminology and methods for working with maximally oriented partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from imposing restrictions on a Markov equivalence class of directed acyclic graphs, or equivalently on its graphical representation as a completed partially directed acyclic graph (CPDAG), for example when adding background knowledge about certain edge orientations. Although maximal PDAGs often arise in practice, causal methods have been mostly developed for CPDAGs. In this paper, we extend such methodology to maximal PDAGs. In particular, we develop methodology to read off possible ancestral relationships, we introduce a graphical criterion for covariate adjustment to estimate total causal effects, and we adapt the IDA and joint-IDA frameworks to estimate multi-sets of possible causal effects. We also present a simulation study that illustrates the gain in identifiability of total causal effects as the background knowledge increases. All methods are implemented in the R package pcalg.Comment: 17 pages, 6 figures, UAI 201
    • …
    corecore