23,127 research outputs found

    Averting Robot Eyes

    Get PDF
    Home robots will cause privacy harms. At the same time, they can provide beneficial services—as long as consumers trust them. This Essay evaluates potential technological solutions that could help home robots keep their promises, avert their eyes, and otherwise mitigate privacy harms. Our goals are to inform regulators of robot-related privacy harms and the available technological tools for mitigating them, and to spur technologists to employ existing tools and develop new ones by articulating principles for avoiding privacy harms. We posit that home robots will raise privacy problems of three basic types: (1) data privacy problems; (2) boundary management problems; and (3) social/relational problems. Technological design can ward off, if not fully prevent, a number of these harms. We propose five principles for home robots and privacy design: data minimization, purpose specifications, use limitations, honest anthropomorphism, and dynamic feedback and participation. We review current research into privacy-sensitive robotics, evaluating what technological solutions are feasible and where the harder problems lie. We close by contemplating legal frameworks that might encourage the implementation of such design, while also recognizing the potential costs of regulation at these early stages of the technology

    Automated Visual Fin Identification of Individual Great White Sharks

    Get PDF
    This paper discusses the automated visual identification of individual great white sharks from dorsal fin imagery. We propose a computer vision photo ID system and report recognition results over a database of thousands of unconstrained fin images. To the best of our knowledge this line of work establishes the first fully automated contour-based visual ID system in the field of animal biometrics. The approach put forward appreciates shark fins as textureless, flexible and partially occluded objects with an individually characteristic shape. In order to recover animal identities from an image we first introduce an open contour stroke model, which extends multi-scale region segmentation to achieve robust fin detection. Secondly, we show that combinatorial, scale-space selective fingerprinting can successfully encode fin individuality. We then measure the species-specific distribution of visual individuality along the fin contour via an embedding into a global `fin space'. Exploiting this domain, we finally propose a non-linear model for individual animal recognition and combine all approaches into a fine-grained multi-instance framework. We provide a system evaluation, compare results to prior work, and report performance and properties in detail.Comment: 17 pages, 16 figures. To be published in IJCV. Article replaced to update first author contact details and to correct a Figure reference on page

    On the Importance of Visual Context for Data Augmentation in Scene Understanding

    Get PDF
    Performing data augmentation for learning deep neural networks is known to be important for training visual recognition systems. By artificially increasing the number of training examples, it helps reducing overfitting and improves generalization. While simple image transformations can already improve predictive performance in most vision tasks, larger gains can be obtained by leveraging task-specific prior knowledge. In this work, we consider object detection, semantic and instance segmentation and augment the training images by blending objects in existing scenes, using instance segmentation annotations. We observe that randomly pasting objects on images hurts the performance, unless the object is placed in the right context. To resolve this issue, we propose an explicit context model by using a convolutional neural network, which predicts whether an image region is suitable for placing a given object or not. In our experiments, we show that our approach is able to improve object detection, semantic and instance segmentation on the PASCAL VOC12 and COCO datasets, with significant gains in a limited annotation scenario, i.e. when only one category is annotated. We also show that the method is not limited to datasets that come with expensive pixel-wise instance annotations and can be used when only bounding boxes are available, by employing weakly-supervised learning for instance masks approximation.Comment: Updated the experimental section. arXiv admin note: substantial text overlap with arXiv:1807.0742

    "Galaxy," Defined

    Full text link
    A growing number of low luminosity and low surface brightness astronomical objects challenge traditional notions of both galaxies and star clusters. To address this, we propose a definition of galaxy independent of the cold dark matter model of the universe: A galaxy is a gravitationally bound set of stars whose properties cannot be explained by a combination of baryons and Newton's laws of gravity. After exploring observational diagnostics of this definition, we examine the classification of ultra-faint dwarfs, globular clusters, ultra-compact dwarfs, and tidal dwarfs. While kinematic studies provide an effective galaxy diagnostic in many regimes, they can be less useful for compact or faint systems. To explore the use of [Fe/H] spread as a complementary diagnostic, we use published spectroscopic [Fe/H] measurements of 16 Milky Way dwarfs and 24 globular clusters to calculate their [Fe/H] spreads and uncertainties. Our principal results are: (i) no old star cluster less luminous then M_V = -10 has a significant (> 0.1 dex) spread in iron; (ii) known ultra-faint dwarfs can be classified with a combination of kinematics and [Fe/H]; (iii) the observed [Fe/H] spreads in massive (> 10^6 M_Sun) globular clusters do not necessarily imply they are the stripped nuclei of dwarfs, nor a need for dark matter; and (iv) if ultra-compact dwarfs reside in dark matter halos akin to those of ultra-faint dwarfs of the same half-light radii, then they will show no clear dynamical signature of dark matter. We suggest measurements that may assist future classification of massive globular clusters, ultra-compact dwarfs, and ultra-faint galaxies. Our galaxy definition is designed to be independent of the details of current observations and models, while our proposed diagnostics can be refined or replaced as our understanding of the universe evolves.Comment: Accepted by AJ; This updated version includes several new references, as well as improvements throughout the text for clarity - in particular clarifying our intended distinction between galaxy "definition" and "diagnostics
    • …
    corecore