871 research outputs found

    A versatile Montgomery multiplier architecture with characteristic three support

    Get PDF
    We present a novel unified core design which is extended to realize Montgomery multiplication in the fields GF(2n), GF(3m), and GF(p). Our unified design supports RSA and elliptic curve schemes, as well as the identity-based encryption which requires a pairing computation on an elliptic curve. The architecture is pipelined and is highly scalable. The unified core utilizes the redundant signed digit representation to reduce the critical path delay. While the carry-save representation used in classical unified architectures is only good for addition and multiplication operations, the redundant signed digit representation also facilitates efficient computation of comparison and subtraction operations besides addition and multiplication. Thus, there is no need for a transformation between the redundant and the non-redundant representations of field elements, which would be required in the classical unified architectures to realize the subtraction and comparison operations. We also quantify the benefits of the unified architectures in terms of area and critical path delay. We provide detailed implementation results. The metric shows that the new unified architecture provides an improvement over a hypothetical non-unified architecture of at least 24.88%, while the improvement over a classical unified architecture is at least 32.07%

    Compromising emissions from a high speed cryptographic embedded system

    Get PDF
    Specific hardware implementations of cryptographic algorithms have been subject to a number of “side channel” attacks of late. A side channel is any information bearing emission that results from the physical implementation of a cryptographic algorithm. Smartcard realisations have been shown to be particularly vulnerable to these attacks. Other more complex embedded cryptographic systems may also be vulnerable, and each new design needs to be tested. The vulnerability of a recently developed high speed cryptographic accelerator is examined. The purpose of this examination is not only to verify the integrity of the device, but also to allow its designers to make a determination of its level of conformance with any standard that they may wish to comply with. A number of attacks were reviewed initially and two were chosen for examination and implementation - Power Analysis and Electromagnetic Analysis. These particular attacks appeared to offer the greatest threat to this particular system. Experimental techniques were devised to implement these attacks and a simulation and micrcontroller emulation were setup to ensure these techniques were sound. Each experimental setup was successful in attacking the simulated data and the micrcontroller circuit. The significance of this was twofold in that it verified the integrity of the setup and proved that a real threat existed. However, the attacks on the cryptographic accelerator failed in all cases to reveal any significant information. Although this is considered a positive result, it does not prove the integrity of the device as it may be possible for an adversary with more resources to successfully attack the board. It does however increase the level of confidence in this particular product and acts as a stepping stone towards conformance of cryptographic standards. The experimental procedures developed can also be used by designers wishing to test the vulnerability of their own products to these attacks

    Highly secure cryptographic computations against side-channel attacks

    Get PDF
    Side channel attacks (SCAs) have been considered as great threats to modern cryptosystems, including RSA and elliptic curve public key cryptosystems. This is because the main computations involved in these systems, as the Modular Exponentiation (ME) in RSA and scalar multiplication (SM) in elliptic curve system, are potentially vulnerable to SCAs. Montgomery Powering Ladder (MPL) has been shown to be a good choice for ME and SM with counter-measures against certain side-channel attacks. However, recent research shows that MPL is still vulnerable to some advanced attacks [21, 30 and 34]. In this thesis, an improved sequence masking technique is proposed to enhance the MPL\u27s resistance towards Differential Power Analysis (DPA). Based on the new technique, a modified MPL with countermeasure in both data and computation sequence is developed and presented. Two efficient hardware architectures for original MPL algorithm are also presented by using binary and radix-4 representations, respectively

    FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER BINARY EXTENSION FIELD

    Get PDF
    Elliptic curve cryptography plays a crucial role in network and communication security. However, implementation of elliptic curve cryptography, especially the implementation of scalar multiplication on an elliptic curve, faces multiple challenges. One of the main challenges is side channel attacks (SCAs). SCAs pose a real threat to the conventional implementations of scalar multiplication such as binary methods (also called doubling-and-add methods). Several scalar multiplication algorithms with countermeasures against side channel attacks have been proposed. Among them, Montgomery Powering Ladder (MPL) has been shown an effective countermeasure against simple power analysis. However, MPL is still vulnerable to certain more sophisticated side channel attacks. A recently proposed modified MPL utilizes a combination of sequence masking (SM), exponent splitting (ES) and point randomization (PR). And it has shown to be one of the best countermeasure algorithms that are immune to many sophisticated side channel attacks [11]. In this thesis, an efficient hardware architecture for this algorithm is proposed and its FPGA implementation is also presented. To our best knowledge, this is the first time that this modified MPL with SM, ES, and PR has been implemented in hardware

    Fault attacks on RSA and elliptic curve cryptosystems

    Full text link
    This thesis answered how a fault attack targeting software used to program EEPROM can threaten hardware devices, for instance IoT devices. The successful fault attacks proposed in this thesis will certainly warn designers of hardware devices of the security risks their devices may face on the programming leve

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    A Meaningful MD5 Hash Collision Attack

    Get PDF
    It is now proved by Wang et al., that MD5 hash is no more secure, after they proposed an attack that would generate two different messages that gives the same MD5 sum. Many conditions need to be satisfied to attain this collision. Vlastimil Klima then proposed a more efficient and faster technique to implement this attack. We use these techniques to first create a collision attack and then use these collisions to implement meaningful collisions by creating two different packages that give identical MD5 hash, but when extracted, each gives out different files with contents specified by the atacker

    Side-Channel Analysis: Countermeasures and Application to Embedded Systems Debugging

    Get PDF
    Side-Channel Analysis plays an important role in cryptology, as it represents an important class of attacks against cryptographic implementations, especially in the context of embedded systems such as hand-held mobile devices, smart cards, RFID tags, etc. These types of attacks bypass any intrinsic mathematical security of the cryptographic algorithm or protocol by exploiting observable side-effects of the execution of the cryptographic operation that may exhibit some relationship with the internal (secret) parameters in the device. Two of the main types of side-channel attacks are timing attacks or timing analysis, where the relationship between the execution time and secret parameters is exploited; and power analysis, which exploits the relationship between power consumption and the operations being executed by a processor as well as the data that these operations work with. For power analysis, two main types have been proposed: simple power analysis (SPA) which relies on direct observation on a single measurement, and differential power analysis (DPA), which uses multiple measurements combined with statistical processing to extract information from the small variations in power consumption correlated to the data. In this thesis, we propose several countermeasures to these types of attacks, with the main themes being timing analysis and SPA. In addition to these themes, one of our contributions expands upon the ideas behind SPA to present a constructive use of these techniques in the context of embedded systems debugging. In our first contribution, we present a countermeasure against timing attacks where an optimized form of idle-wait is proposed with the goal of making the observable decryption time constant for most operations while maintaining the overhead to a minimum. We show that not only we reduce the overhead in terms of execution speed, but also the computational cost of the countermeasure, which represents a considerable advantage in the context of devices relying on battery power, where reduced computations translates into lower power consumption and thus increased battery life. This is indeed one of the important themes for all of the contributions related to countermeasures to side- channel attacks. Our second and third contributions focus on power analysis; specifically, SPA. We address the issue of straightforward implementations of binary exponentiation algorithms (or scalar multiplication, in the context of elliptic curve cryptography) making a cryptographic system vulnerable to SPA. Solutions previously proposed introduce a considerable performance penalty. We propose a new method, namely Square-and-Buffered- Multiplications (SABM), that implements an SPA-resistant binary exponentiation exhibiting optimal execution time at the cost of a small amount of storage --- O(\sqrt(\ell)), where \ell is the bit length of the exponent. The technique is optimal in the sense that it adds SPA-resistance to an underlying binary exponentiation algorithm while introducing zero computational overhead. We then present several new SPA-resistant algorithms that result from a novel way of combining the SABM method with an alternative binary exponentiation algorithm where the exponent is split in two halves for simultaneous processing, showing that by combining the two techniques, we can make use of signed-digit representations of the exponent to further improve performance while maintaining SPA-resistance. We also discuss the possibility of our method being implemented in a way that a certain level of resistance against DPA may be obtained. In a related contribution, we extend these ideas used in SPA and propose a technique to non-intrusively monitor a device and trace program execution, with the intended application of assisting in the difficult task of debugging embedded systems at deployment or production stage, when standard debugging tools or auxiliary components to facilitate debugging are no longer enabled in the device. One of the important highlights of this contribution is the fact that the system works on a standard PC, capturing the power traces through the recording input of the sound card
    corecore