690 research outputs found

    Computer Aided Tools for the Design and Planning of Personalized Shoulder Arthroplasty

    Get PDF
    La artroplastia de hombro es el tercer procedimiento de reemplazo articular más común, después de la artroplastia de rodilla y cadera, y actualmentees el de más rápido crecimiento en el campo ortopédico. Las principales opciones quirúrgicas incluyen la artroplastia total de hombro (TSA), en la quese restaura la anatomía articular normal, y, para pacientes con un manguito rotador completamente desgarrado, la artroplastia inversa de hombro (RSA), en la que la bola y la cavidad de la articulación glenohumeral se cambian. A pesar del progreso reciente y los avances en el diseño, las tasas de complicaciones reportadas para RSA son más altas que las de la artroplastia de hombro convencional. Un enfoque específico para el paciente, en el que los médicos adaptan el tratamiento quirúrgico a las características del mismo y al estado preoperatorio, por ejemplo mediante implantes personalizados y planificación previa, puede ayudar a reducir los problemas postoperatorios y mejorar el resultado funcional. El objetivo principal de esta tesis es desarrollar y evaluar métodos novedosos para RSA personalizado, utilizando tecnologías asistidas por ordenador de última generación para estandarizar y automatizar las fases de diseño y planificación.Los implantes personalizados son una solución adecuada para el tratamiento de pacientes con pérdida extensa de hueso glenoideo. Sin embargo, los ingenieros clínicos se enfrentan a muchas variables en el diseño de implantes (número y tipo de tornillos, superficie de contacto, etc.) y una gran variabilidad anatómica y patológica. Actualmente, no existen herramientas objetivas para guiarlos a la hora de elegir el diseño óptimo, es decir, con suficiente estabilidad inicial del implante, lo que hace que el proceso de diseño sea tedioso, lento y dependiente del usuario. En esta tesis, se desarrolló una simulación de Virtual Bench Test (VBT) utilizando un modelo de elementos finitos para evaluar automáticamente la estabilidad inicial de los implantes de hombro personalizados. A través de un experimento de validación, se demostró que los ingenieros clínicos pueden utilizar el resultado de Virtual Bench Test como referencia para respaldar sus decisiones y adaptaciones durante el proceso de diseño del implante.Al diseñar implantes de hombro, el conocimiento de la morfología y la calidad ósea de la escápula en toda la población es fundamental. En particular, se tienen en cuenta las regiones con la mejor reserva ósea (hueso cortical) para definir la posición y orientación de los orificios de los tornillos, mientras se busca una fijación óptima. Como alternativa a las mediciones manuales, cuya generalización está limitada por el análisis de pequeños subconjuntos de pacientes potenciales, Statistical Shape Models (SSMs) se han utilizado comúnmente para describir la variabilidad de la forma dentro de una población. Sin embargo, estos SSMs normalmente no contienen información sobre el grosor cortical.Por lo tanto, se desarrolló una metodología para combinar la forma del hueso escapular y la morfología de la cortical en un SSM. Primero, se presentó y evaluó un método para estimar el espesor cortical, a partir de un análisis de perfil de Hounsfield Unit (HU). Luego, utilizando 32 escápulas sanas segmentadas manualmente, se creó y evaluó un modelo de forma estadística que incluía información de la cortical. La herramienta desarrollada se puede utilizar para implantar virtualmente un nuevo diseño y probar su congruencia dentro de una población virtual generada, reduciendo así el número de iteraciones de diseño y experimentos con cadáveres.Las mediciones del alargamiento de los músculos deltoides y del manguito rotador durante la planificación quirúrgica pueden ayudar a los médicos aseleccionar un diseño y una posición de implante adecuados. Sin embargo, tal evaluación requiere la indicación de puntos anatómicos como referencia para los puntos de unión de los músculos, un proceso que requiere mucho tiempo y depende del usuario, ya que a menudo se realiza manualmente. Además, las imágenes médicas, que se utilizan normalmente para la artroplastia de hombro,contienen en su mayoría solo el húmero proximal, lo que hace imposible indicarlos puntos de unión de los músculos que se encuentran fuera del campo de visión de la exploración. Por lo tanto, se desarrolló y evaluó un método totalmente automatizado, basado en SSM, para medir la elongación del deltoides y del manguito rotador. Su aplicabilidad clínica se demostró mediante la evaluación del rendimiento de la estimación automatizada de la elongación muscular para un conjunto de articulaciones artríticas del hombro utilizadas para la planificación preoperatoria de RSA, lo que confirma que es una herramienta adecuada para los cirujanos a la hora de evaluar y refinar las decisiones clínicas.En esta investigación, se dio un paso importante en la dirección de un enfoque más personalizado de la artroplastia inversa de hombro, en el que el manejo quirúrgico, es decir, el diseño y la posición del implante, se adapta a las características específicas del paciente y al estado preoperatorio. Al aplicar tecnologías asistidas por computadora en la práctica clínica, el proceso de diseño y planificación se puede automatizar y estandarizar, reduciendo así los costos y los plazos de entrega. Además, gracias a los métodos novedosos presentados en esta tesis, esperamos en el futuro una adopción más amplia del enfoque personalizado, con importantes beneficios tanto para los cirujanos como para los pacientes.Shoulder arthroplasty is the third most common joint replacement procedure, after knee and hip arthroplasty, and currently the most rapidly growing one in the orthopaedic field. The main surgical options include total shoulder arthroplasty (TSA), in which the normal joint anatomy is restored, and, for patients with a completely torn rotator cuff, reverse shoulder arthroplasty (RSA), in which the ball and the socket of the glenohumeral joint are switched. Despite the recent progress and advancement in design, the reported rates of complication for RSA are higher than those of conventional shoulder arthroplasty. A patient-specific approach, in which clinicians adapt the surgical management to patient characteristics and preoperative condition, e.g. through custom implants and pre-planning, can help to reduce postoperative problems and improve the functional outcome. The main goal of this thesis is to develop and evaluate novel methods for personalized RSA, using state-of-the-art computer aided technologies to standardize and automate the design and planning phases. Custom implants are a suitable solution when treating patients with extensive glenoid bone loss. However, clinical engineers are confronted with an enormous implant design space (number and type of screws, contact surface, etc.) and large anatomical and pathological variability. Currently, no objective tools exist to guide them when choosing the optimal design, i.e. with sufficient initial implant stability, thus making the design process tedious, time-consuming, and user-dependent. In this thesis, a Virtual Bench Test (VBT) simulation was developed using a finite element model to automatically evaluate the initial stability of custom shoulder implants. Through a validation experiment, it was shown that the virtual test bench output can be used by clinical engineers as a reference to support their decisions and adaptations during the implant design process. When designing shoulder implants, knowledge about bone morphology and bone quality of the scapula throughout a certain population is fundamental. In particular, regions with the best bone stock (cortical bone) are taken into account to define the position and orientation of the screw holes, while aiming for an optimal fixation. As an alternative to manual measurements, whose generalization is limited by the analysis of small sub-sets of the potential patients, Statistical Shape Models (SSMs) have been commonly used to describe shape variability within a population. However, these SSMs typically do not contain information about cortical thickness. Therefore, a methodology to combine scapular bone shape and cortex morphology in an SSM was developed. First, a method to estimate cortical thickness, starting from a profile analysis of Hounsfield Unit (HU), was presented and evaluated. Then, using 32 manually segmented healthy scapulae, a statistical shape model including cortical information was created and assessed. The developed tool can be used to virtually implant a new design and test its congruency inside a generated virtual population, thus reducing the number of design iterations and cadaver labs. Measurements of deltoid and rotator cuff muscle elongation during surgical planning can help clinicians to select a suitable implant design and position. However, such an assessment requires the indication of anatomical landmarks as a reference for the muscle attachment points, a process that is time-consuming and user-dependent, since often performed manually. Additionally, the medical images, which are normally used for shoulder arthroplasty, mostly contain only the proximal humerus, making it impossible to indicate those muscle attachment points which lie outside of the field of view of the scan. Therefore, a fully-automated method, based on SSM, for measuring deltoid and rotator cuff elongation was developed and evaluated. Its clinical applicability was demonstrated by assessing the performance of the automated muscle elongation estimation for a set of arthritic shoulder joints used for preoperative planning of RSA, thus confirming it a suitable tool for surgeons when evaluating and refining clinical decisions. In this research, a major step was taken into the direction of a more personalized approach to Reverse Shoulder Arthroplasty, in which the surgical management, i.e. implant design and position, is adapted to the patient-specific characteristics and preoperative condition. By applying computer aided technologies in the clinical practice, design and planning process can be automated and standardized, thus reducing costs and lead times. Additionally, thanks to the novel methods presented in this thesis, we expect in the future a wider adoption of the personalized approach, with important benefits both for surgeons and patients.<br /

    Accurate 3D reconstruction of bony surfaces using ultrasonic synthetic aperture techniques for robotic knee arthroplasty

    Get PDF
    Robotically guided knee arthroplasty systems generally require an individualized, preoperative 3D model of the knee joint. This is typically measured using Computed Tomography (CT) which provides the required accuracy for preoperative surgical intervention planning. Ultrasound imaging presents an attractive alternative to CT, allowing for reductions in cost and the elimination of doses of ionizing radiation, whilst maintaining the accuracy of the 3D model reconstruction of the joint. Traditional phased array ultrasound imaging methods, however, are susceptible to poor resolution and signal to noise ratios (SNR). Alleviating these weaknesses by offering superior focusing power, synthetic aperture methods have been investigated extensively within ultrasonic non-destructive testing. Despite this, they have yet to be fully exploited in medical imaging. In this paper, the ability of a robotic deployed ultrasound imaging system based on synthetic aperture methods to accurately reconstruct bony surfaces is investigated. Employing the Total Focussing Method (TFM) and the Synthetic Aperture Focussing Technique (SAFT), two samples were imaged which were representative of the bones of the knee joint: a human-shaped, composite distal femur and a bovine distal femur. Data were captured using a 5MHz, 128 element 1D phased array, which was manipulated around the samples using a robotic positioning system. Three dimensional surface reconstructions were then produced and compared with reference models measured using a precision laser scanner. Mean errors of 0.82 mm and 0.88 mm were obtained for the composite and bovine samples, respectively, thus demonstrating the feasibility of the approach to deliver the sub-millimetre accuracy required for the application

    The Contact Mechanics and Kinematics of Radial Head Implants

    Get PDF
    A number of commercially available radial head (RH) implants are used for the management of RH fractures. The optimal shape of a RH implant to restore joint mechanics to the native state has not been established. This work compares radiocapitellar contact and kinematics for three implant designs as well as the native RH. These implants include an axisymmetric, a quasi-anatomic and a patient-specific design. When compared to the native RH, only the axisymmetric implant was significantly different in contact area (p=0.008). Active and passive forearm supination was assessed for differences in translations of the RH. Significant differences were found in anterior-posterior translations during active forearm supination between the axisymmetric implant and the native RH (p=0.014) and between the quasi-anatomic implant and native RH (p=0.019). This work demonstrates that while an anatomic implant slightly improves radiocapitellar contact and kinematics, future efforts are needed to optimize the materials employed in these devices

    Cost-effective 3D scanning and printing technologies for outer ear reconstruction: Current status

    Get PDF
    Current 3D scanning and printing technologies offer not only state-of-the-art developments in the field of medical imaging and bio-engineering, but also cost and time effective solutions for surgical reconstruction procedures. Besides tissue engineering, where living cells are used, bio-compatible polymers or synthetic resin can be applied. The combination of 3D handheld scanning devices or volumetric imaging, (open-source) image processing packages, and 3D printers form a complete workflow chain that is capable of effective rapid prototyping of outer ear replicas. This paper reviews current possibilities and latest use cases for 3D-scanning, data processing and printing of outer ear replicas with a focus on low-cost solutions for rehabilitation engineering

    Validation of the multi-segment foot model with bi-planar fluoroscopy

    Get PDF
    A multi-segment foot model (MSFM) is a useful tool for measuring foot joint kinematics although soft-tissue artefact is often present. Quantifying this error is needed to evaluate the accuracy of this model. This study validated the MSFM against bi-planar radiostereometric analysis (RSA) fluoroscopy. Heel-strike, mid-stance, and toe-off events during the stance phase were compared between motion capture and fluoroscopy. Rise/drop of the medial longitudinal arch showed a significant difference (p \u3c 0.05) during toe-off, but no significant difference during heel-strike or mid-stance. Hindfoot supination/pronation and internal/external rotation, and forefoot supination/pronation motions showed no significant difference between the two techniques. The lack of significant difference will allow the MSFM to be used as a sufficiently accurate technique for measuring foot joint motions

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Role of Mimics a Cad Software in 3D Reconstruction of CT Data in Oral and Maxillofacial Surgery

    Get PDF
    INTRODUCTION: Ever since radiations became a part of diagnosis after the discovery of X- rays by roentgen, it has undergone so many advances and the biggest leap of them all is the transition from 2D to 3D. 3D visualization and diagnosis has been made possible by computed tomography. With the arrival of 3D in radiography, the spectrum of use has widened in that it is not only being used for visualization, there is also use of the 3 dimensional images in diagnosing, treatment planning and surgical simulation which is now becoming a more popular method. Technological advances in computerized tomography (CT) have reduced time for data acquisition and thereby reduce the exposure time and the radiation risk for the patient. Now CT data can be exported in DICOM (Digital Imaging and Communication) format which is a format accepted universally by most of the softwares for reconstruction so that CT images may be economically and quickly generated using the CAD software. With Helical CT a single exposure is enough to obtain reconstructed images in all the 3 planes, Axial, Coronal and sagittal. 3D CT was judged superior to multiplanar two-dimensional CT. CT data can be exported into a CD in DICOM format. This data can be reconstructed into a 3D virtual object/model using various softwares. In our department Materialise Mimics is used for the reconstruction of CT data, visualizing, planning and surgical simulation. AIM AND OBJECTIVE: The purpose of the study is to evaluate the efficacy of Mimics a medical based CAD software in 3D reconstruction of CT data, visualization, surgical simulation and physical model fabrication which can be used in Oral and Maxillofacial Surgery. MATERIALS AND METHOD: This study was done in the department of Oral and MaxilloFacial Surgery, Ragas Dental College and Hospital, Uthandi, Chennai. Period of study was done during September 2008 to July 2010. CT was taken for selective patients. A CAD based medical software MIMICS (Materialise, Leuven, Belgium). is used for 3D reconstruction of the acquired CT data. CT protocol. CT Scan parameter for all the patients were as follows, Vertex to Manubrium, 130 kV and 81 mA/s, Slice increment 0.5mm, Width 512 pxl, Height 512 pxl, Pixel size .500 mm, Gantry tilt 0.00, Algorithm H70s. CONCLUSION: The data produced by the CT machines are a series of images. These images are printed on sheets and are viewed as conventional 2D images only and are not interactive. But through this software the CT data is now very interactive. A powerful processor, large virtual memory of the computer and dedicated graphics card is required. This software provides a better visualization of the anatomy and pathology, compared to conventional CT images. Accurate measurement between points and measuring of angles is possible with this software. Osteotomy, distraction and other surgical simulation can be done with this software. Splints templates and guides for intraoperative use can be fabricated. This software eliminates cumbersome procedures to the patient like facebow transfer and impression making. It is a good learning tool as it gives exact details of the anatomy. From this study we conclude that MIMICS a medical based CAD software is a very efficient tool in Visualization, Diagnosis, Treatment planning, Surgical Simulation and fabrication of Templates for intraoperative use in Oral and MaxilloFacial Surgery

    Development of Force-Space Navigation for Surgical Robotics

    Get PDF
    Surgical robotics have been used for many years in orthopaedic procedures in the hip and knee. Robots tend to offer high accuracy and repeatability but add increased cost, complexity, time, and workflow disruption. This work outlines the design and development of a surgical robot that navigates using force feedback. Flexible components tether the patient to the robot and reaction loads are measured allowing the robot to “feel” its way around the pre-operative plan. Differences calculated between measured and desired loads are converted to Cartesian corrections that the robot used to navigate. The robot was tested first using simple square paths to test accuracy, repeatability and functionality. A pre-operative plan was established for implantation of the surgical system and allowed the robot to be tested doing a complex glenoid implant path. Finally, a study was performed and compared the robot’s surgical method to current surgical techniques of a trained surgical fellow on shoulder analogs. Based on this study, the robot performed as well as or better than the surgeon in almost every measurement parameter with less than 1 mm of implant placement error in many measurement metrics and less than 2° of implant orientation error in each angular measurement

    Development and Validation of a Markerless Radiostereometric Analysis (RSA)System

    Get PDF
    A markerless radiostereometric analysis (RSA) system was developed to measure three- dimensional (3D) skeletal kinematics using biplanar fluoroscopy. A virtual set-up was created, in which the fluoroscope foci and image planes were positioned. Computed tomography (CT) was used to create 3D bone models that were imported into the virtual set-up and manually moved until their projections, as viewed from the two foci, matched the two images. The accuracy of the markerless RSA system in determining relative shoulder kinematic translations and orientations was evaluated against the “gold standards” of a precisions cross-slide table and a standard RSA system, respectively. Average root mean squared errors (RMSEs) of 0.082 mm and 1.18° were found. In an effort to decrease subject’s radiation exposure, the effect of lowering CT dosage on markerless RSA accuracy was evaluated. Acceptable accuracies were obtained using bone models derived from one-ninth of the normal radiation dose
    corecore