468 research outputs found

    On the Use of Electrooculogram for Efficient Human Computer Interfaces

    Get PDF
    The aim of this study is to present electrooculogram signals that can be used for human computer interface efficiently. Establishing an efficient alternative channel for communication without overt speech and hand movements is important to increase the quality of life for patients suffering from Amyotrophic Lateral Sclerosis or other illnesses that prevent correct limb and facial muscular responses. We have made several experiments to compare the P300-based BCI speller and EOG-based new system. A five-letter word can be written on average in 25 seconds and in 105 seconds with the EEG-based device. Giving message such as “clean-up” could be performed in 3 seconds with the new system. The new system is more efficient than P300-based BCI system in terms of accuracy, speed, applicability, and cost efficiency. Using EOG signals, it is possible to improve the communication abilities of those patients who can move their eyes

    Sensory System for Implementing a Human—Computer Interface Based on Electrooculography

    Get PDF
    This paper describes a sensory system for implementing a human–computer interface based on electrooculography. An acquisition system captures electrooculograms and transmits them via the ZigBee protocol. The data acquired are analysed in real time using a microcontroller-based platform running the Linux operating system. The continuous wavelet transform and neural network are used to process and analyse the signals to obtain highly reliable results in real time. To enhance system usability, the graphical interface is projected onto special eyewear, which is also used to position the signal-capturing electrodes

    Graphene textiles towards soft wearable interfaces for electroocular remote control of objects

    Get PDF
    Study of eye movements (EMs) and measurement of the resulting biopotentials, referred to as electrooculography (EOG), may find increasing use in applications within the domain of activity recognition, context awareness, mobile human-computer interaction (HCI) applications, and personalized medicine provided that the limitations of conventional “wet” electrodes are addressed. To overcome the limitations of conventional electrodes, this work, reports for the first time the use and characterization of graphene-based electroconductive textile electrodes for EOG acquisition using a custom-designed embedded eye tracker. This self-contained wearable device consists of a headband with integrated textile electrodes and a small, pocket-worn, battery-powered hardware with real-time signal processing which can stream data to a remote device over Bluetooth. The feasibility of the developed gel-free, flexible, dry textile electrodes was experimentally authenticated through side-by-side comparison with pre-gelled, wet, silver/silver chloride (Ag/AgCl) electrodes, where the simultaneously and asynchronous recorded signals displayed correlation of up to ~87% and ~91% respectively over durations reaching hundred seconds and repeated on several participants. Additionally, an automatic EM detection algorithm is developed and the performance of the graphene-embedded “all-textile” EM sensor and its application as a control element toward HCI is experimentally demonstrated. The excellent success rate ranging from 85% up to 100% for eleven different EM patterns demonstrates the applicability of the proposed algorithm in wearable EOG-based sensing and HCI applications with graphene textiles. The system-level integration and the holistic design approach presented herein which starts from fundamental materials level up to the architecture and algorithm stage is highlighted and will be instrumental to advance the state-of-the-art in wearable electronic devices based on sensing and processing of electrooculograms

    Hybrid Human-Machine Interface to Mouse Control for Severely Disabled People

    Get PDF
    This paper describes a hybrid human-machine interface, based on electro-oculogram (EOG) and electromyogram (EMG), which allows the mouse control of a personal computer using eye movement and the voluntary contraction of any facial muscle. The bioelectrical signals are sensed through adhesives electrodes, and acquired by a custom designed portable and wireless system. The mouse can be moved in any direction, vertical, horizontal and diagonal, by two EOG channels and the EMG signal is used to perform the mouse click action. Blinks are avoided by a decision algorithm and the natural reading of the screen is possible with a specially designed software. A virtual keyboard was used for the experiments with healthy people and with a severely disabled patient. The results demonstrate an intuitive and accessible control, evaluated in terms of performance, time for task execution and userÂŽs acceptance. Besides, a quantitative index to estimate the training impact was computed with good results.Fil: LĂłpez Celani, Natalia Martina. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Orosco, Eugenio Conrado. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de AutomĂĄtica; ArgentinaFil: PĂ©rez Berenguer, MarĂ­a Elisa. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Bajinay, Sergio. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Zanetti, Roberto. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Valentinuzzi, Maximo. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; Argentin

    Auxilio: A Sensor-Based Wireless Head-Mounted Mouse for People with Upper Limb Disability

    Full text link
    Upper limb disability may be caused either due to accidents, neurological disorders, or even birth defects, imposing limitations and restrictions on the interaction with a computer for the concerned individuals using a generic optical mouse. Our work proposes the design and development of a working prototype of a sensor-based wireless head-mounted Assistive Mouse Controller (AMC), Auxilio, facilitating interaction with a computer for people with upper limb disability. Combining commercially available, low-cost motion and infrared sensors, Auxilio solely utilizes head and cheek movements for mouse control. Its performance has been juxtaposed with that of a generic optical mouse in different pointing tasks as well as in typing tasks, using a virtual keyboard. Furthermore, our work also analyzes the usability of Auxilio, featuring the System Usability Scale. The results of different experiments reveal the practicality and effectiveness of Auxilio as a head-mounted AMC for empowering the upper limb disabled community.Comment: 28 pages, 9 figures, 5 table
    • 

    corecore