692 research outputs found

    The Traveling Salesman Problem with Stochastic and Correlated Customers

    Get PDF
    It is well-known that the cost of parcel delivery can be reduced by designingroutes that take into account the uncertainty surrounding customers’ presences. Thus far, routing problems with stochastic customer presences have relied on the assumption that all customer presences are independent from each other. However, the notion that demographic factors retain predictive power for parcel-delivery efficiency suggests that shared characteristics can be exploited to map dependencies between customer presences. This paper introduces the correlated probabilistic traveling salesman problem (CPTSP). The CPTSP generalizes the traveling salesman problem with stochastic customer presences, also known as the probabilistic traveling salesman problem (PTSP), to account for potentialcorrelations between customer presences. I propose a generic and flexible model formulation for the CPTSP using copulas that maintains computational and mathematical tractability in high-dimensional settings. I also present several adaptations of existing exact and heuristic frameworks to solve the CPTSP effectively. Computational experiments on real-world parcel-delivery data reveal that correlations between stochastic customer presences do not always affect route decisions, but could have a considerable impact on route costestimates

    WIND POWER PROBABILISTIC PREDICTION AND UNCERTAINTY MODELING FOR OPERATION OF LARGE-SCALE POWER SYSTEMS

    Get PDF
    Over the last decade, large scale renewable energy generation has been integrated into power systems. Wind power generation is known as a widely-used and interesting kind of renewable energy generation around the world. However, the high uncertainty of wind power generation leads to some unavoidable error in wind power prediction process; consequently, it makes the optimal operation and control of power systems very challenging. Since wind power prediction error cannot be entirely removed, providing accurate models for wind power uncertainty can assist power system operators in mitigating its negative effects on decision making conditions. There are efficient ways to show the wind power uncertainty, (i) accurate wind power prediction error probability distribution modeling in the form of probability density functions and (ii) construction of reliable and sharp prediction intervals. Construction of accurate probability density functions and high-quality prediction intervals are difficult because wind power time series is non-stationary. In addition, incorporation of probability density functions and prediction intervals in power systems’ decision-making problems are challenging. In this thesis, the goal is to propose comprehensive frameworks for wind power uncertainty modeling in the form of both probability density functions and prediction intervals and incorporation of each model in power systems’ decision-making problems such as look-ahead economic dispatch. To accurately quantify the uncertainty of wind power generation, different approaches are studied, and a comprehensive framework is then proposed to construct the probability density functions using a mixture of beta kernels. The framework outperforms benchmarks because it can validly capture the actual features of wind power probability density function such as main mass, boundaries, high skewness, and fat tails from the wind power sample moments. Also, using the proposed framework, a generic convex model is proposed for chance-constrained look-ahead economic dispatch problems. It allows power system operators to use piecewise linearization techniques to convert the problem to a mixed-integer linear programming problem. Numerical simulations using IEEE 118-bus test system show that compared with widely used sequential linear programming approaches, the proposed mixed-integer linear programming model leads to less system’s total cost. A framework based on the concept of bandwidth selection for a new and flexible kernel density estimator is proposed for construction of prediction intervals. Unlike previous related works, the proposed framework uses neither a cost function-based optimization problem nor point prediction results; rather, a diffusion-based kernel density estimator is utilized to achieve high-quality prediction intervals for non-stationary wind power time series. The proposed prediction interval construction framework is also founded based on a parallel computing procedure to promote the computational efficiency for practical applications in power systems. Simulation results demonstrate the high performance of the proposed framework compared to well-known conventional benchmarks such as bootstrap extreme learning machine, lower upper bound estimation, quantile regression, auto-regressive integrated moving average, and linear programming-based quantile regression. Finally, a new adjustable robust optimization approach is used to incorporate the constructed prediction intervals with the proposed fuzzy and adaptive diffusion estimator-based prediction interval construction framework. However, to accurately model the correlation and dependence structure of wind farms, especially in high dimensional cases, C-Vine copula models are used for prediction interval construction. The simulation results show that uncertainty modeling using C-Vine copula can lead the system operators to get more realistic sense about the level of overall uncertainty in the system, and consequently more conservative results for energy and reserve scheduling are obtained

    Data-driven Approximation of Distributionally Robust Chance Constraints using Bayesian Credible Intervals

    Full text link
    The non-convexity and intractability of distributionally robust chance constraints make them challenging to cope with. From a data-driven perspective, we propose formulating it as a robust optimization problem to ensure that the distributionally robust chance constraint is satisfied with high probability. To incorporate available data and prior distribution knowledge, we construct ambiguity sets for the distributionally robust chance constraint using Bayesian credible intervals. We establish the congruent relationship between the ambiguity set in Bayesian distributionally robust chance constraints and the uncertainty set in a specific robust optimization. In contrast to most existent uncertainty set construction methods which are only applicable for particular settings, our approach provides a unified framework for constructing uncertainty sets under different marginal distribution assumptions, thus making it more flexible and widely applicable. Additionally, under the concavity assumption, our method provides strong finite sample probability guarantees for optimal solutions. The practicality and effectiveness of our approach are illustrated with numerical experiments on portfolio management and queuing system problems. Overall, our approach offers a promising solution to distributionally robust chance constrained problems and has potential applications in other fields

    Optimal enterprise risk management and decision making with shared and dependent risks

    Get PDF
    Includes bibliographical references (pages 27-29).Published as: Journal of Risk and Insurance, vol. 84, no. 4, December 2017, pp. 1127–1169. https://doi.org/10.1111/jori.12140.Dynamic enterprise risk management (ERM) entails holistic decision-making for critical corporate functions such as capital budgeting and risk management. The interplay across business divisions, however, is complicated due to their natural interactions through the shared and dependent risk exposures within an intricate corporate structure. This paper develops an integrated optimization framework via a copula-based decision tree interface to facilitate ERM decision making to meet the specified enterprise goal in a multi-period setting. We illustrate our model and provide managerial insights with a case study for a financial services company engaged in both banking and insurance businesses

    Data-driven scenario generation for two-stage stochastic programming

    Get PDF
    Optimisation under uncertainty has always been a focal point within the Process Systems Engineering (PSE) research agenda. In particular, the efficient manipulation of large amount of data for the uncertain parameters constitutes a crucial condition for effectively tackling stochastic programming problems. In this context, this work proposes a new data-driven Mixed-Integer Linear Programming (MILP) model for the Distribution & Moment Matching Problem (DMP). For cases with multiple uncertain parameters a copula-based simulation of initial scenarios is employed as preliminary step. Moreover, the integration of clustering methods and DMP in the proposed model is shown to enhance computational performance. Finally, we compare the proposed approach with state-of-the-art scenario generation methodologies. Through a number of case studies we highlight the benefits regarding the quality of the generated scenario trees by evaluating the corresponding obtained stochastic solutions

    Probabilistic models for data efficient reinforcement learning

    Get PDF
    Trial-and-error based reinforcement learning (RL) has seen rapid advancements in recent times, especially with the advent of deep neural networks. However, the standard deep learning methods often overlook the progress made in control theory by treating systems as black-box. We propose a model-based RL framework based on probabilistic Model Predictive Control (MPC). In particular, we propose to learn a probabilistic transition model using Gaussian Processes (GPs) to incorporate model uncertainty into long-term predictions, thereby, reducing the impact of model errors. We provide theoretical guarantees for first-order optimality in the GP-based transition models with deterministic approximate inference for long-term planning. We demonstrate that our approach not only achieves the state-of-the-art data efficiency, but also is a principled way for RL in constrained environments. When the true state of the dynamical system cannot be fully observed the standard model based methods cannot be directly applied. For these systems an additional step of state estimation is needed. We propose distributed message passing for state estimation in non-linear dynamical systems. In particular, we propose to use expectation propagation (EP) to iteratively refine the state estimate, i.e., the Gaussian posterior distribution on the latent state. We show two things: (a) Classical Rauch-Tung-Striebel (RTS) smoothers, such as the extended Kalman smoother (EKS) or the unscented Kalman smoother (UKS), are special cases of our message passing scheme; (b) running the message passing scheme more than once can lead to significant improvements over the classical RTS smoothers. We show the explicit connection between message passing with EP and well-known RTS smoothers and provide a practical implementation of the suggested algorithm. Furthermore, we address convergence issues of EP by generalising this framework to damped updates and the consideration of general -divergences. Probabilistic models can also be used to generate synthetic data. In model based RL we use ’synthetic’ data as a proxy to real environments and in order to achieve high data efficiency. The ability to generate high-fidelity synthetic data is crucial when available (real) data is limited as in RL or where privacy and data protection standards allow only for limited use of the given data, e.g., in medical and financial data-sets. Current state-of-the-art methods for synthetic data generation are based on generative models, such as Generative Adversarial Networks (GANs). Even though GANs have achieved remarkable results in synthetic data generation, they are often challenging to interpret. Furthermore, GAN-based methods can suffer when used with mixed real and categorical variables. Moreover, the loss function (discriminator loss) design itself is problem specific, i.e., the generative model may not be useful for tasks it was not explicitly trained for. In this paper, we propose to use a probabilistic model as a synthetic data generator. Learning the probabilistic model for the data is equivalent to estimating the density of the data. Based on the copula theory, we divide the density estimation task into two parts, i.e., estimating univariate marginals and estimating the multivariate copula density over the univariate marginals. We use normalising flows to learn both the copula density and univariate marginals. We benchmark our method on both simulated and real data-sets in terms of density estimation as well as the ability to generate high-fidelity synthetic data.Open Acces

    Applications of Probabilistic Forecasting in Smart Grids : A Review

    Get PDF
    This paper reviews the recent studies and works dealing with probabilistic forecasting models and their applications in smart grids. According to these studies, this paper tries to introduce a roadmap towards decision-making under uncertainty in a smart grid environment. In this way, it firstly discusses the common methods employed to predict the distribution of variables. Then, it reviews how the recent literature used these forecasting methods and for which uncertain parameters they wanted to obtain distributions. Unlike the existing reviews, this paper assesses several uncertain parameters for which probabilistic forecasting models have been developed. In the next stage, this paper provides an overview related to scenario generation of uncertain parameters using their distributions and how these scenarios are adopted for optimal decision-making. In this regard, this paper discusses three types of optimization problems aiming to capture uncertainties and reviews the related papers. Finally, we propose some future applications of probabilistic forecasting based on the flexibility challenges of power systems in the near future.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore