17 research outputs found

    On the usage of GRECOSAR: an orbital polarimetric SAR simulator of complex targets for vessel classification studies

    Get PDF
    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the target’s bearing and speed are considered, and for the particular case of vessels, even the translational and rotational movements induced by the sea state. All these capabilities make the simulator a powerful tool for supplying large amounts of data with precise scenario information and for testing future sensor configurations. In this paper, the usefulness of the simulator on vessel classification studies is assessed. Several simulated polarimetric images are presented to analyze the potentialities of coherent target decompositions for classifying complex geometries, thus basing an operational algorithm. The limitations highlighted by the results suggest that other approaches, like POLSAR interferometry, should be explored.Peer Reviewe

    On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies

    Get PDF
    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the target’s bearing and speed are considered, and for the particular case of vessels, even the translational and rotational movements induced by the sea state. All these capabilities make the simulator a powerful tool for supplying large amounts of data with precise scenario information and for testing future sensor configurations. In this paper, the usefulness of the simulator on vessel classification studies is assessed. Several simulated polarimetric images are presented to analyze the potentialities of coherent target decompositions for classifying complex geometries, thus basing an operational algorithm. The limitations highlighted by the results suggest that other approaches, like POLSAR interferometry, should be explored.Peer Reviewe

    Single-pass polarimetric SAR interferometry for vessel classification

    Get PDF
    This paper presents a novel method for vessel classification based on single-pass polarimetric synthetic aperture radar (SAR) interferometry. It has been developed according to recent ship scattering studies that show that the polarimetric response of many types of vessels can be described by trihedral- and dihedral-like mechanisms. The adopted methodology is quite simple. The input interferometric data are decomposed in terms of the Pauli basis, and hence, one height image is derived for each simple mechanism. Then, the local maxima of these images are isolated, and a 3-D map of scatters is generated. The correlation of this map with the scattering distribution expected for a set of reference ships provides the final classification decision. The performance of the proposed method has been tested with the orbital SAR simulator developed at Universitat PolitÈcnica de Catalunya. Different vessel models have been processed with a sensor configuration similar to the incoming TanDEM-X system. The analysis of diverse vessel bearings, vessel speeds, and sea states shows that the map of scatters matches reasonably the geometry of ships allowing a correct identification even for adverse environmental conditions.Peer Reviewe

    Study of sea clutter influence in ship classification algorithms based on Polarimetric SAR Inteferometry

    Get PDF
    This paper is focused to evaluate the influence of sea clutter in the performance of ship classification algorithms based on single-pass Polarimetric SAR Interferometry (PolInSAR). For such purpose, series of numerical simulations have been carried out with GRECOSAR, the SAR simulator of complex targets developed by UPC. There, different types of vessels have been considered for a TerraSAR-X like sensor and a sea surface following the two-scale wave approach. The quality of ship discrimination has been quantitatively evaluated with a novel identification method that exploits the particular scattering properties of ships. The results show that the presence of clutter does not notably drop identification performance, despite negative matches can be observed in some particular situations. But the requirement of single-pass interferometric capabilities is not achieved by any of the existing orbital system. This drawback can difficult the validation of what has been observed in simulation environments and can be one of the most limiting factors for the practical implementation of these techniques. Ideas and possible solutions to relax the system requirements are preliminary discussed.Postprint (published version

    Electromagnetic backscatter modelling of icebergs at c-band in an ocean environment

    Get PDF
    This thesis outlines the development of an electromagnetic (EM) backscatter model of icebergs. It is a necessary first step for the generation of in-house synthetic aperture radar (SAR) data of icebergs to support optimum iceberg/ship classifier design. The EM modelling was developed in three stages. At first, an EM backscatter model was developed to generate simulated SAR data chips of iceberg targets at small incidence angles. The model parameters were set to mimic a dual polarized dataset collected at C-Band with the Sentinel-1A satellite. The simulated SAR data chips were compared with signatures and radiometric properties of the satellite data, including total radar cross section (TRCS). A second EM model was developed to mimic the parameters of a second SAR data collection with RADARSAT-2; this second data collection was at larger incidence angles and was fully polarimetric (four channels and interchannel phase). The full polarimetric SAR data allowed for a comparison of modelled TRCS and polarimetric decompositions. Finally, the EM backscatter models were tested in the context of iceberg/ship classification by comparing the performance of various computer vision classifiers using both simulated and real SAR image data of iceberg and vessel targets. This step is critical to check the compatibility of simulated data with the real data, and the ability to mix real and simulated SAR imagery for the generation of skilled classifiers. An EM backscatter modelling tool called GRECOSAR was used for the modelling work. GRECOSAR includes the ability to generate small scenes of the ocean using Pierson-Moskowitz spectral parameters. It also allows the placement of a 3D target shape into that ocean scene. Therefore, GRECOSAR is very useful for simulating SAR targets, however it can only model single layer scattering from the targets. This was found to be limiting in that EM scattering throughout volume of the iceberg could not be generated. This resulted in EM models that included only surface scattering of the iceberg. In order to generate realistic SAR scenes of icebergs on the ocean, 3D models of icebergs were captured in a series of field programs off the coast of Newfoundland and Labrador, Canada. The 3D models of the icebergs were obtained using a light detection and ranging (LiDAR) and multi-beam sonar data from a specially equipped vessel by a team of C-CORE. While profiling the iceberg targets, SAR images from satellites were captured for comparison with the simulated SAR images. The analysis of the real and simulated SAR imagery included comparisons of TRCS, SAR signature morphology and polarimetric decompositions of the targets. In general, these comparisons showed a good consistency between the simulated and real SAR scene. Simulations were also performed with varying target orientation and sea conditions (i.e., wind speed and direction). A wide variability of the TRCS and SAR signature morphology was observed with varying scene parameters. Icebergs were modelled using a high dielectric constant to mimic melting iceberg surfaces as seen during field work. Given that GRECOSAR could only generate surface backscatter, a mathematical model was developed to quantify the effect of melt water on the amount of surface and volume backscatter that might be expected from the icebergs. It was found that the icebergs in a high state of melt should produce predominantly surface scatter, thus validating the use of GRECOSAR for icebergs in this condition. Once the simulated SAR targets were validated against the real SAR data collections, a large dataset of simulated SAR chips of ships and icebergs were created specifically for the purpose of target classification. SAR chips were generated at varying imaging parameters and target sizes and passed on to an iceberg/ship classifier. Real and simulated SAR chips were combined in varying quantities (or targets) resulting in a series of different classifiers of varying skill. A good agreement between the classifier’s performance was found. This indicates the compatibility of the simulated SAR imagery with this application and provides an indication that the simulated data set captures all the necessary physical properties of icebergs for ship and iceberg classification

    A high-precision SAR echo simulation method based on FDTD

    Get PDF
    Synthetic aperture radar (SAR) echo simulation offers a low-cost and convenient way to obtain high-resolution images of targets, and plays an important role in system design and algorithm validation. Although high frequency approximation simulation is widely used, it is considered to be imprecise when calculating scattering field of fine structures, such as exhaust pipes and groove structures, especially in low frequency band. In this paper, a finite-difference time-domain (FDTD) based method is proposed for high-precision SAR echo simulation. In this method, scattering process of electromagnetic wave is accurately simulated to obtain equivalent electric and magnetic current on the surface of the target. Also, a near-to-far-field transformation is applied to the equivalent electric and magnetic current to calculate the field at the receiving antenna. In this transformation, a waveform forming method is introduced to simulate stripmap SAR echoes. By introducing this method, the usage of FDTD in one single simulation can be greatly reduced. The experiments show that proposed method can significantly improve the efficiency of the simulation while maintaining echo accuracy

    VESSEL CLASSIFICATION IN COSMO-SKYMED SAR DATA USING HIERARCHICAL FEATURE SELECTION

    Get PDF

    DETECTION OF SHIP TARGETS IN POLARIMETRIC SAR DATA USING 2D-PCA DATA FUSION

    Get PDF

    Detección automática de la zona ciega de un SLAR

    Get PDF
    Este artículo presenta una metodología para la detección y medida de la zona ciega de un sensor embarcado en aeronave del tipo SLAR. La zona ciega de un SLAR está formada por la región donde hay ausencia de medida o los datos están enmascarados con errores significativos. El objetivo que se busca es detectar esta región, delimitarla y etiquetarla, para reducir las regiones de búsqueda a ROIs específicos, y así, simplificar los procesamientos necesarios para detecciones de otros objetivos, como manchas de hidrocarburos o embarcaciones.Este trabajo ha sido financiado por el proyecto (RTC-2014-1863-8) “ONTIME: Operación remota de Transmisión de Información en Misiones de Emergencia” de la Convocatoria Retos de Colaboración del MINECO
    corecore