14 research outputs found

    Yet another approach to the Gough-Stewart platform forward kinematics

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The forward kinematics of the Gough-Stewart platform, and their simplified versions in which some leg endpoints coalesce, has been typically solved using variable elimination methods. In this paper, we cast doubts on whether this is the easiest way to solve the problem. We will see how the indirect approach in which the length of some extra virtual legs is first computed leads to important simplifications. In particular, we provide a procedure to solve 30 out of 34 possible topologies for a Gough-Stewart platform without variable elimination.Peer ReviewedPostprint (author's final draft

    The forward kinematics of doubly-planar Gough-Stewart platforms and the position analysis of strips of tetrahedra

    Get PDF
    The final publication is available at link.springer.comA strip of tetrahedra is a tetrahedron-tetrahedron truss where any tetrahedron has two neighbors except those in the extremes which have only one. The problem of finding all the possible lengths for an edge in the strip compatible with a given distance imposed between the strip end-points has been revealed of relevance due to the large number of possible applications. In this paper, this is applied to solve the forward kinematics of 6-6 Gough-Stewart platforms with planar base and moving platform, a problem which is known to have up to 40 solutions (20 if we do not consider mirror configurations with respect to the base as different solutions).Peer ReviewedPostprint (author's final draft

    Distance geometry in active structures

    Get PDF
    The final publication is available at link.springer.comDistance constraints are an emerging formulation that offers intuitive geometrical interpretation of otherwise complex problems. The formulation can be applied in problems such as position and singularity analysis and path planning of mechanisms and structures. This paper reviews the recent advances in distance geometry, providing a unified view of these apparently disparate problems. This survey reviews algebraic and numerical techniques, and is, to the best of our knowledge, the first attempt to summarize the different approaches relating to distance-based formulations.Peer ReviewedPostprint (author's final draft

    Explicit parametrizations of the configuration spaces of anthropomorphic multi-linkage systems

    Full text link

    New geometric approaches to the analysis and design of Stewart-Gough platforms

    Get PDF
    In general, rearranging the legs of a Stewart-Gough platform, i.e., changing the locations of its leg attachments, modifies the platform singularity locus in a rather unexpected way. Nevertheless, some leg rearrangements have been recently found to leave singularities invariant. Identification of such rearrangements is useful not only for the kinematic analysis of the platforms, but also as a tool to redesign manipulators avoiding the implementation of multiple spherical joints, which are difficult to construct and have a small motion range. In this study, a summary of these singularity-invariant leg rearrangements is presented, and their practical implications are illustrated with several examples including well-known architectures.The authors gratefully acknowledge funding from the Generalitat de Catalunya through the Robotics group (SRG0155).Peer Reviewe

    Closure polynomials for strips of tetrahedra

    Get PDF
    The final publication is available at link.springer.comA tetrahedral strip is a tetrahedron-tetrahedron truss where any tetrahedron has two neighbors except those in the extremes which have only one. Unless any of the tetrahedra degenerate, such a truss is rigid. In this case, if the distance between the strip endpoints is imposed, any rod length in the truss is constrained by all the others to attain discrete values. In this paper, it is shown how to characterize these values as the roots of a closure polynomial whose derivation requires surprisingly no other tools than elementary algebraic manipulations. As an application of this result, the forward kinematics of two parallel platforms with closure polynomials of degree 16 and 12 is straightforwardly solved.Peer ReviewedPostprint (author's final draft

    Kinematics of line-plane subassemblies in Stewart platforms

    Get PDF
    Trabajo presentado al ICRA 2009 celebrado en Kobe (Japón) del 12 al 17 de mayo.When the attachments of five legs in a Stewart platform are collinear on one side and coplanar on the other, the platform is said to contain a line-plane subassembly. This paper is devoted to the kinematics analysis of this subassembly paying particular attention to the problem of moving the aforementioned attachments without altering the singularity locus of the platform. It is shown how this is always possible provided that some cross-ratios between lines - defined by points in the plane- are kept equal to other cross-ratios between points in the line. This result leads to two simple motion rules upon which complex changes in the location of the attachments can be performed. These rules have interesting practical consequences as they permit a designer to optimize aspects of a parallel robot containing the analyzed subassembly, such as its manipulability in a given region, without altering its singularity locus.This work was supported by the project 'Analysis and motion planning of complex robotic systems' (4802). This work has been partially supported by the Spanish Ministry of Education and Science, under the I+D project DPI2007-60858.Peer Reviewe

    Closure polynomials for strips of tetrahedra

    Get PDF
    The final publication is available at link.springer.comA tetrahedral strip is a tetrahedron-tetrahedron truss where any tetrahedron has two neighbors except those in the extremes which have only one. Unless any of the tetrahedra degenerate, such a truss is rigid. In this case, if the distance between the strip endpoints is imposed, any rod length in the truss is constrained by all the others to attain discrete values. In this paper, it is shown how to characterize these values as the roots of a closure polynomial whose derivation requires surprisingly no other tools than elementary algebraic manipulations. As an application of this result, the forward kinematics of two parallel platforms with closure polynomials of degree 16 and 12 is straightforwardly solved.Peer ReviewedPostprint (author's final draft

    Distance-based formulations for the position analysis of kinematic chains

    Get PDF
    This thesis addresses the kinematic analysis of mechanisms, in particular, the position analysis of kinematic chains, or linkages, that is, mechanisms with rigid bodies (links) interconnected by kinematic pairs (joints). This problem, of completely geometrical nature, consists in finding the feasible assembly modes that a kinematic chain can adopt. An assembly mode is a possible relative transformation between the links of a kinematic chain. When an assignment of positions and orientations is made for all links with respect to a given reference frame, an assembly mode is called a configuration. The methods reported in the literature for solving the position analysis of kinematic chains can be classified as graphical, analytical, or numerical. The graphical approaches are mostly geometrical and designed to solve particular problems. The analytical and numerical methods deal, in general, with kinematic chains of any topology and translate the original geometric problem into a system of kinematic analysis of all the Assur kinematic chains resulting from replacing some of its revolute joints by slider joints. Thus, it is concluded that the polynomials of all fully-parallel planar robots can be derived directly from that of the widely known 3-RPR robot. In addition to these results, this thesis also presents an efficient procedure, based on distance and oriented area constraints, and geometrical arguments, to trace coupler curves of pin-jointed Gr¨ubler kinematic chains. All these techniques and results together are contributions to theoretical kinematics of mechanisms, robot kinematics, and distance plane geometry. equations that defines the location of each link based, mainly, on independent loop equations. In the analytical approaches, the system of kinematic equations is reduced to a polynomial, known as the characteristic polynomial of the linkage, using different elimination methods —e.g., Gr¨obner bases or resultant techniques. In the numerical approaches, the system of kinematic equations is solved using, for instance, polynomial continuation or interval-based procedures. In any case, the use of independent loop equations to solve the position analysis of kinematic chains, almost a standard in kinematics of mechanisms, has seldom been questioned despite the resulting system of kinematic equations becomes quite involved even for simple linkages. Moreover, stating the position analysis of kinematic chains directly in terms of poses, with or without using independent loop equations, introduces two major disadvantages: arbitrary reference frames has to be included, and all formulas involve translations and rotations simultaneously. This thesis departs from this standard approach by, instead of directly computing Cartesian locations, expressing the original position problem as a system of distance-based constraints that are then solved using analytical and numerical procedures adapted to their particularities. In favor of developing the basics and theory of the proposed approach, this thesis focuses on the study of the most fundamental planar kinematic chains, namely, Baranov trusses, Assur kinematic chains, and pin-jointed Gr¨ubler kinematic chains. The results obtained have shown that the novel developed techniques are promising tools for the position analysis of kinematic chains and related problems. For example, using these techniques, the characteristic polynomials of most of the cataloged Baranov trusses can be obtained without relying on variable eliminations or trigonometric substitutions and using no other tools than elementary algebra. An outcome in clear contrast with the complex variable eliminations require when independent loop equations are used to tackle the problem. The impact of the above result is actually greater because it is shown that the characteristic polynomial of a Baranov truss, derived using the proposed distance-based techniques, contains all the necessary and sufficient information for solving the positionEsta tesis aborda el problema de análisis de posición de cadenas cinemáticas, mecanismos con cuerpos rígidos (enlaces) interconectados por pares cinemáticos (articulaciones). Este problema, de naturaleza geométrica, consiste en encontrar los modos de ensamblaje factibles que una cadena cinemática puede adoptar. Un modo de ensamblaje es una transformación relativa posible entre los enlaces de una cadena cinemática. Los métodos reportados en la literatura para la solución del análisis de posición de cadenas cinemáticas se pueden clasificar como gráficos, analíticos o numéricos. Los enfoques gráficos son geométricos y se diseñan para resolver problemas particulares. Los métodos analíticos y numéricos tratan con cadenas cinemáticas de cualquier topología y traducen el problema geométrico original en un sistema de ecuaciones cinemáticas que define la ubicación de cada enlace, basado generalmente en ecuaciones de bucle independientes. En los enfoques analíticos, el sistema de ecuaciones cinemáticas se reduce a un polinomio, conocido como el polinomio característico de la cadena cinemática, utilizando diferentes métodos de eliminación. En los métodos numéricos, el sistema se resuelve utilizando, por ejemplo, la continuación polinomial o procedimientos basados en intervalos. En cualquier caso, el uso de ecuaciones de bucle independientes, un estándar en cinemática de mecanismos, rara vez ha sido cuestionado a pesar de que el sistema resultante de ecuaciones es bastante complicado, incluso para cadenas simples. Por otra parte, establecer el análisis de la posición de cadenas cinemáticas directamente en términos de poses, con o sin el uso de ecuaciones de bucle independientes, presenta dos inconvenientes: sistemas de referencia arbitrarios deben ser introducidos, y todas las fórmulas implican traslaciones y rotaciones de forma simultánea. Esta tesis se aparta de este enfoque estándar expresando el problema de posición original como un sistema de restricciones basadas en distancias, en lugar de directamente calcular posiciones cartesianas. Estas restricciones son posteriormente resueltas con procedimientos analíticos y numéricos adaptados a sus particularidades. Con el propósito de desarrollar los conceptos básicos y la teoría del enfoque propuesto, esta tesis se centra en el estudio de las cadenas cinemáticas planas más fundamentales, a saber, estructuras de Baranov, cadenas cinemáticas de Assur, y cadenas cinemáticas de Grübler. Los resultados obtenidos han demostrado que las técnicas desarrolladas son herramientas prometedoras para el análisis de posición de cadenas cinemáticas y problemas relacionados. Por ejemplo, usando dichas técnicas, los polinomios característicos de la mayoría de las estructuras de Baranov catalogadas se puede obtener sin realizar eliminaciones de variables o sustituciones trigonométricas, y utilizando solo álgebra elemental. Un resultado en claro contraste con las complejas eliminaciones de variables que se requieren cuando se utilizan ecuaciones de bucle independientes. El impacto del resultado anterior es mayor porque se demuestra que el polinomio característico de una estructura de Baranov, derivado con las técnicas propuestas, contiene toda la información necesaria y suficiente para resolver el análisis de posición de las cadenas cinemáticas de Assur que resultan de la sustitución de algunas de sus articulaciones de revolución por articulaciones prismáticas. De esta forma, se concluye que los polinomios de todos los robots planares totalmente paralelos se pueden derivar directamente del polinomio característico del conocido robot 3-RPR. Adicionalmente, se presenta un procedimiento eficaz, basado en restricciones de distancias y áreas orientadas, y argumentos geométricos, para trazar curvas de acoplador de cadenas cinemáticas de Grübler. En conjunto, todas estas técnicas y resultados constituyen contribuciones a la cinemática teórica de mecanismos, la cinemática de robots, y la geometría plana de distancias. Barcelona 13

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France
    corecore