1,568 research outputs found

    The subpower membership problem for semigroups

    Full text link
    Fix a finite semigroup SS and let a1,…,ak,ba_1,\ldots,a_k, b be tuples in a direct power SnS^n. The subpower membership problem (SMP) asks whether bb can be generated by a1,…,aka_1,\ldots,a_k. If SS is a finite group, then there is a folklore algorithm that decides this problem in time polynomial in nknk. For semigroups this problem always lies in PSPACE. We show that the SMP for a full transformation semigroup on 3 letters or more is actually PSPACE-complete, while on 2 letters it is in P. For commutative semigroups, we provide a dichotomy result: if a commutative semigroup SS embeds into a direct product of a Clifford semigroup and a nilpotent semigroup, then SMP(S) is in P; otherwise it is NP-complete

    Von Neumann Regular Cellular Automata

    Full text link
    For any group GG and any set AA, a cellular automaton (CA) is a transformation of the configuration space AGA^G defined via a finite memory set and a local function. Let CA(G;A)\text{CA}(G;A) be the monoid of all CA over AGA^G. In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element τ∈CA(G;A)\tau \in \text{CA}(G;A) is von Neumann regular (or simply regular) if there exists σ∈CA(G;A)\sigma \in \text{CA}(G;A) such that τ∘σ∘τ=τ\tau \circ \sigma \circ \tau = \tau and σ∘τ∘σ=σ\sigma \circ \tau \circ \sigma = \sigma, where ∘\circ is the composition of functions. Such an element σ\sigma is called a generalised inverse of τ\tau. The monoid CA(G;A)\text{CA}(G;A) itself is regular if all its elements are regular. We establish that CA(G;A)\text{CA}(G;A) is regular if and only if ∣G∣=1\vert G \vert = 1 or ∣A∣=1\vert A \vert = 1, and we characterise all regular elements in CA(G;A)\text{CA}(G;A) when GG and AA are both finite. Furthermore, we study regular linear CA when A=VA= V is a vector space over a field F\mathbb{F}; in particular, we show that every regular linear CA is invertible when GG is torsion-free elementary amenable (e.g. when G=Zd, d∈NG=\mathbb{Z}^d, \ d \in \mathbb{N}) and V=FV=\mathbb{F}, and that every linear CA is regular when VV is finite-dimensional and GG is locally finite with Char(F)∤o(g)\text{Char}(\mathbb{F}) \nmid o(g) for all g∈Gg \in G.Comment: 10 pages. Theorem 5 corrected from previous versions, in A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer, 201

    Finite Computational Structures and Implementations

    Full text link
    What is computable with limited resources? How can we verify the correctness of computations? How to measure computational power with precision? Despite the immense scientific and engineering progress in computing, we still have only partial answers to these questions. In order to make these problems more precise, we describe an abstract algebraic definition of classical computation, generalizing traditional models to semigroups. The mathematical abstraction also allows the investigation of different computing paradigms (e.g. cellular automata, reversible computing) in the same framework. Here we summarize the main questions and recent results of the research of finite computation.Comment: 12 pages, 3 figures, will be presented at CANDAR'16 and final version published by IEEE Computer Societ

    Automaton semigroup constructions

    Full text link
    The aim of this paper is to investigate whether the class of automaton semigroups is closed under certain semigroup constructions. We prove that the free product of two automaton semigroups that contain left identities is again an automaton semigroup. We also show that the class of automaton semigroups is closed under the combined operation of 'free product followed by adjoining an identity'. We present an example of a free product of finite semigroups that we conjecture is not an automaton semigroup. Turning to wreath products, we consider two slight generalizations of the concept of an automaton semigroup, and show that a wreath product of an automaton monoid and a finite monoid arises as a generalized automaton semigroup in both senses. We also suggest a potential counterexample that would show that a wreath product of an automaton monoid and a finite monoid is not a necessarily an automaton monoid in the usual sense.Comment: 13 pages; 2 figure

    Automaton semigroups: new construction results and examples of non-automaton semigroups

    Get PDF
    This paper studies the class of automaton semigroups from two perspectives: closure under constructions, and examples of semigroups that are not automaton semigroups. We prove that (semigroup) free products of finite semigroups always arise as automaton semigroups, and that the class of automaton monoids is closed under forming wreath products with finite monoids. We also consider closure under certain kinds of Rees matrix constructions, strong semilattices, and small extensions. Finally, we prove that no subsemigroup of (N,+)(\mathbb{N}, +) arises as an automaton semigroup. (Previously, (N,+)(\mathbb{N},+) itself was the unique example of a finitely generated residually finite semigroup that was known not to arise as an automaton semigroup.)Comment: 27 pages, 6 figures; substantially revise
    • …
    corecore