372,522 research outputs found

    Multi-objective optimization design of ship propulsion shafting based on the multi-attribute decision making

    Get PDF
    The expression of field transfer matrix of a ship propulsion shafting is deduced based on the modified Timoshenko beam theory using the transfer matrix method. Moreover, the power flow of each bearing of the propulsion shafting is carried out numerically. The Pareto optimal solution set is obtained by selecting the aft stern bearing stiffness, front stern bearing stiffness, thrust bearing stiffness and the bearing spacing length as the optimization design variables and selecting the sum of the power flow of each bearing of the propulsion shafting as the optimization objectives. Then, the Pareto optimal solution set is sorted by the TOPSIS method and MADM approach. The analysis results show that it is feasible and effective to avoid the blindness of selecting optimization results by optimizing the propulsion shafting multi-objectives based on the TOPSIS method and MADM approach

    Modeling quasi-dark states with Temporal Coupled-Mode Theory

    Get PDF
    Coupled resonators are commonly used to achieve tailored spectral responses and allow novel functionalities in a broad range of applications, from optical modulation and filtering in integrated photonic circuits to the study of nonlinear dynamics in arrays of resonators. The Temporal Coupled-Mode Theory (TCMT) provides a simple and general tool that is widely used to model these devices and has proved to yield very good results in many different systems of low-loss, weakly coupled resonators. Relying on TCMT to model coupled resonators might however be misleading in some circumstances due to the lumped-element nature of the model. In this article, we report an important limitation of TCMT related to the prediction of dark states. Studying a coupled system composed of three microring resonators, we demonstrate that TCMT predicts the existence of a dark state that is in disagreement with experimental observations and with the more general results obtained with the Transfer Matrix Method (TMM) and the Finite-Difference Time-Domain (FDTD) simulations. We identify the limitation in the TCMT model to be related to the mechanism of excitation/decay of the supermodes and we propose a correction that effectively reconciles the model with expected results. A comparison with TMM and FDTD allows to verify both steady-state and transient solutions of the modified-TCMT model. The proposed correction is derived from general considerations, energy conservation and the non-resonant power circulating in the system, therefore it provides good insight on how the TCMT model should be modified to eventually account for the same limitation in a different coupled-resonator design. Moreover, our discussion based on coupled microring resonators can be useful for other electromagnetic resonant systems due to the generality and far-reach of the TCMT formalism.Comment: 7 pages, 4 figure

    Analysis and design of matrix converters for adjustable speed drives and distributed power sources

    Get PDF
    Recently, matrix converter has received considerable interest as a viable alternative to the conventional back-to-back PWM (Pulse Width Modulation) converter in the ac/ac conversion. This direct ac/ac converter provides some attractive characteristics such as: inherent four-quadrant operation; absence of bulky dc-link electrolytic capacitors; clean input power characteristics and increased power density. However, industrial application of the converter is still limited because of some practical issues such as common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. This dissertation proposes several new matrix converter topologies together with control strategies to provide a solution about the above issues. In this dissertation, a new modulation method which reduces the common mode voltage at the matrix converter is first proposed. The new method utilizes the proper zero vector selection and placement within a sampling period and results in the reduction of the common mode voltage, square rms of ripple components of input current and switching losses. Due to the absence of a dc-link, matrix converter powered ac drivers suffer from input voltage disturbances. This dissertation proposes a new ride-through approach to improve robustness for input voltage disturbances. The conventional matrix converter is modified with the addition of ride-through module and the add-on module provides ride-through capability for matrix converter fed adjustable speed drivers. In order to increase the inherent low voltage transfer ratio of the matrix converter, a new three-phase high-frequency link matrix converter is proposed, where a dual bridge matrix converter is modified by adding a high-frequency transformer into dc-link. The new converter provides flexible voltage transfer ratio and galvanic isolation between input and output ac sources. Finally, the matrix converter concept is extended to dc/ac conversion from ac/ac conversion. The new dc/ac direct converter consists of soft switching full bridge dc/dc converter and three phase voltage source inverter without dc link capacitors. Both converters are synchronized for zero current/voltage switching and result in higher efficiency and lower EMI (Electro Magnetic Interference) throughout the whole load range. Analysis, design example and experimental results are detailed for each proposed topology

    Multi-Objective Optimization for IRS-Aidded Multi-user MIMO SWIPT Systems

    Get PDF
    In this paper, we investigate an intelligent reflecting surface (IRS) assisted simultaneous wireless information and power transfer (SWIPT) system in which users equipped with multiple antennas exploit power-splitting (PS) strategies for simultaneously information decoding (ID) and energy harvesting (EH). Different from the majority of previous studies which focused on single objective optimization problems (SOOPs) and assumed the linearity of EH models, in this paper, we aim at studying the multi-objective optimization problem (MOOP) of the sum rate (SR) and the totalharvested energy (HE) subject to the maximum transmit power (TP) constraint, the user quality of service (QoS), and HE requirements at each user with taking a practical non-linear EH (NLEH) model into consideration. To investigate insightful tradeoffs between the achievable SR and total HE, we adopt the modified weighted Tchebycheff method to transform the MOOP into a SOOP. However, solving the SOOPs and modified SOOP is mathematically difficult due to the non-convexity of the object functions and the constraints of the coupled variables of the  base station (BS) transmit precoding matrices (TPMs), the user PS ratios (PSRs), and the IRS phase shift matrix (PSM). To address these challenges, an alternating optimization (AO) framework is used to decompose the formulated design problem into sub-problems. In addition, we apply the majorization-minimization (MM) approach to transform the sub-problems into convex optimization ones. Finally,  numerical simulation results are conducted to verify the tradeoffs between the SR and the total amount of HE. The numerical results also indicate that the considered system using the IRS with optimal phase shifts provides considerable performance improvement in terms of the achievable SR and HE as compared to the counterparts without using the IRS or with the IRS of fixed phase shifts

    Direct Cooled Ceramic Substrate for Thermal Control of Automotive Power Electronics

    Get PDF
    As electric vehicle technology develops, manufacturers would like to move toward hotter coolants for power electronic components to reduce system level costs. Thus, unique designs of inverter designs were sought to enable operation with 105°C coolant. The proposed solution in this research incorporated flow channels into the ceramic layer of the direct-bonded copper substrate typically found in power electronic packages. The focus of this research details the design and analysis of the direct cooled ceramic substrate from the perspective of its thermal performance and innovative packaging concept. The research was directed to pursue alumina as the substrate ceramic because of its low cost. Alumina, which has the lowest thermal conductivity among four materials considered, requires a larger substrate cross-sectional area to result in a viable design. Based on preliminary model parameters, two flow channel designs with larger alumina substrates were shown to meet the design goals. Experiments were conducted to characterize the pressure drop across metal foam inserts which were used to enhance the heat transfer in the flow channels. Other experiments were conducted to validate the thermal performance and model configuration. The results of thermal validation experiment showed that the assumed effective thermal conductivity of the metal foam – fluid matrix was too large. The small contact area between the metal foam inserts and ceramic substrate reduces the effective thermal conductivity. Based on the data reduction method, the model parameters were modified to produce temperature distributions that better reflected the experimental data. Simulations were updated with the modified model parameters. These models showed that the cross-sectional area of the alumina substrate had to increase further in order to adequately manage the heat load. In parallel efforts, the overall inverter package was considered. A linear manifold package resulted in the highest power density. Technical review of the inverter package raised concerns about stray inductance. Incorporating the entire inverter leg on one substrate would alleviate these losses. Future research can use the parameters determined in this work to more confidently predict the performance of direct cooled ceramic substrate designs

    Numerical Renormalization Approach to Two-Dimensional Quantum Antiferromagnets with Valence-Bond-Solid Type Ground State

    Get PDF
    We study the ground-state properties of the two-dimensional quantum spin systems having the valence-bond-solid (VBS) type ground states. The ``product-of-tensors'' form of the ground-state wavefunction of the system is utilized to associate it with an equivalent classical lattice statistical model which can be treated by the transfer-matrix method. For diagonalization of the transfer matrix, we employ the product-wavefunction renormalization group method which is a variant of the density-matrix renormalization group method. We obtain the correlation length and the sublattice magnetization accurately. For the anisotropically ``deformed'' S=3/2 VBS model on the honeycomb lattice, we find that the correlation length as a function of the deformation parameter behaves very much alike as that in the S=3/2 VBS chain.Comment: 9 pages and 11 non-embedded figures, REVTex, submitted to New Journal of Physic

    Weak Resilience of Networked Control Systems

    Full text link
    In this paper, we propose a method to establish a networked control system that maintains its stability in the presence of certain undesirable incidents on local controllers. We call such networked control systems weakly resilient. We first derive a necessary and sufficient condition for the weak resilience of networked systems. Networked systems do not generally satisfy this condition. Therefore, we provide a method for designing a compensator which ensures the weak resilience of the compensated system. Finally, we illustrate the efficiency of the proposed method by a power system example based on the IEEE 14-bus test system
    • …
    corecore