1,656 research outputs found

    The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems

    Full text link
    We prove that an ω\omega-categorical core structure primitively positively interprets all finite structures with parameters if and only if some stabilizer of its polymorphism clone has a homomorphism to the clone of projections, and that this happens if and only if its polymorphism clone does not contain operations α\alpha, β\beta, ss satisfying the identity αs(x,y,x,z,y,z)βs(y,x,z,x,z,y)\alpha s(x,y,x,z,y,z) \approx \beta s(y,x,z,x,z,y). This establishes an algebraic criterion equivalent to the conjectured borderline between P and NP-complete CSPs over reducts of finitely bounded homogenous structures, and accomplishes one of the steps of a proposed strategy for reducing the infinite domain CSP dichotomy conjecture to the finite case. Our theorem is also of independent mathematical interest, characterizing a topological property of any ω\omega-categorical core structure (the existence of a continuous homomorphism of a stabilizer of its polymorphism clone to the projections) in purely algebraic terms (the failure of an identity as above).Comment: 15 page

    QCSP on partially reflexive forests

    Full text link
    We study the (non-uniform) quantified constraint satisfaction problem QCSP(H) as H ranges over partially reflexive forests. We obtain a complexity-theoretic dichotomy: QCSP(H) is either in NL or is NP-hard. The separating condition is related firstly to connectivity, and thereafter to accessibility from all vertices of H to connected reflexive subgraphs. In the case of partially reflexive paths, we give a refinement of our dichotomy: QCSP(H) is either in NL or is Pspace-complete

    Faster Existential FO Model Checking on Posets

    Full text link
    We prove that the model checking problem for the existential fragment of first-order (FO) logic on partially ordered sets is fixed-parameter tractable (FPT) with respect to the formula and the width of a poset (the maximum size of an antichain). While there is a long line of research into FO model checking on graphs, the study of this problem on posets has been initiated just recently by Bova, Ganian and Szeider (CSL-LICS 2014), who proved that the existential fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon their result in two ways: (1) the runtime of our algorithm is O(f(|{\phi}|,w).n^2) on n-element posets of width w, compared to O(g(|{\phi}|). n^{h(w)}) of Bova et al., and (2) our proofs are simpler and easier to follow. We complement this result by showing that, under a certain complexity-theoretical assumption, the existential FO model checking problem does not have a polynomial kernel.Comment: Paper as accepted to the LMCS journal. An extended abstract of an earlier version of this paper has appeared at ISAAC'14. Main changes to the previous version are improvements in the Multicoloured Clique part (Section 4

    Quantified Constraints in Twenty Seventeen

    Get PDF
    I present a survey of recent advances in the algorithmic and computational complexity theory of non-Boolean Quantified Constraint Satisfaction Problems, incorporating some more modern research directions

    On The Relational Width of First-Order Expansions of Finitely Bounded Homogeneous Binary Cores with Bounded Strict Width

    Full text link
    The relational width of a finite structure, if bounded, is always (1,1) or (2,3). In this paper we study the relational width of first-order expansions of finitely bounded homogeneous binary cores where binary cores are structures with equality and some anti-reflexive binary relations such that for any two different elements a, b in the domain there is exactly one binary relation R with (a, b) in R. Our main result is that first-order expansions of liberal finitely bounded homogeneous binary cores with bounded strict width have relational width (2, MaxBound) where MaxBound is the size of the largest forbidden substructure, but is not less than 3, and liberal stands for structures that do not forbid certain finite structures of small size. This result is built on a new approach and concerns a broad class of structures including reducts of homogeneous digraphs for which the CSP complexity classification has not yet been obtained.Comment: A long version of an extended abstract that appeared in LICS 202

    QCSP on semicomplete digraphs

    Get PDF
    We study the (non-uniform) quantified constraint satisfaction problem QCSP(H) as H ranges over semicomplete digraphs. We obtain a complexity-theoretic trichotomy: QCSP(H) is either in P, is NP-complete or is Pspace-complete. The largest part of our work is the algebraic classification of precisely which semicompletes enjoy only essentially unary polymorphisms, which is combinatorially interesting in its own right
    corecore