10,033 research outputs found

    On Computing the Total Variation Distance of Hidden Markov Models

    Get PDF
    We prove results on the decidability and complexity of computing the total variation distance (equivalently, the L_1-distance) of hidden Markov models (equivalently, labelled Markov chains). This distance measures the difference between the distributions on words that two hidden Markov models induce. The main results are: (1) it is undecidable whether the distance is greater than a given threshold; (2) approximation is #P-hard and in PSPACE

    The big-O problem for labelled markov chains and weighted automata

    Get PDF
    Given two weighted automata, we consider the problem of whether one is big-O of the other, i.e., if the weight of every finite word in the first is not greater than some constant multiple of the weight in the second. We show that the problem is undecidable, even for the instantiation of weighted automata as labelled Markov chains. Moreover, even when it is known that one weighted automaton is big-O of another, the problem of finding or approximating the associated constant is also undecidable. Our positive results show that the big-O problem is polynomial-time solvable for unambiguous automata, coNP-complete for unlabelled weighted automata (i.e., when the alphabet is a single character) and decidable, subject to Schanuel’s conjecture, when the language is bounded (i.e., a subset of w_1^* … w_m^* for some finite words w_1,… ,w_m). On labelled Markov chains, the problem can be restated as a ratio total variation distance, which, instead of finding the maximum difference between the probabilities of any two events, finds the maximum ratio between the probabilities of any two events. The problem is related to ε-differential privacy, for which the optimal constant of the big-O notation is exactly exp(ε)

    Asymmetric distances for approximate differential privacy

    Get PDF
    Differential privacy is a widely studied notion of privacy for various models of computation, based on measuring differences between probability distributions. We consider (epsilon,delta)-differential privacy in the setting of labelled Markov chains. For a given epsilon, the parameter delta can be captured by a variant of the total variation distance, which we call lv_{alpha} (where alpha = e^{epsilon}). First we study lv_{alpha} directly, showing that it cannot be computed exactly. However, the associated approximation problem turns out to be in PSPACE and #P-hard. Next we introduce a new bisimilarity distance for bounding lv_{alpha} from above, which provides a tighter bound than previously known distances while remaining computable with the same complexity (polynomial time with an NP oracle). We also propose an alternative bound that can be computed in polynomial time. Finally, we illustrate the distances on case studies

    Linear Distances between Markov Chains

    Get PDF
    We introduce a general class of distances (metrics) between Markov chains, which are based on linear behaviour. This class encompasses distances given topologically (such as the total variation distance or trace distance) as well as by temporal logics or automata. We investigate which of the distances can be approximated by observing the systems, i.e. by black-box testing or simulation, and we provide both negative and positive results

    A rule of thumb for riffle shuffling

    Full text link
    We study how many riffle shuffles are required to mix n cards if only certain features of the deck are of interest, e.g. suits disregarded or only the colors of interest. For these features, the number of shuffles drops from 3/2 log_2(n) to log_2(n). We derive closed formulae and an asymptotic `rule of thumb' formula which is remarkably accurate.Comment: 27 pages, 5 table

    The big-O problem

    Get PDF
    Given two weighted automata, we consider the problem of whether one is big-O of the other, i.e., if the weight of every finite word in the first is not greater than some constant multiple of the weight in the second. We show that the problem is undecidable, even for the instantiation of weighted automata as labelled Markov chains. Moreover, even when it is known that one weighted automaton is big-O of another, the problem of finding or approximating the associated constant is also undecidable. Our positive results show that the big-O problem is polynomial-time solvable for unambiguous automata, coNP-complete for unlabelled weighted automata (i.e., when the alphabet is a single character) and decidable, subject to Schanuel's conjecture, when the language is bounded (i.e., a subset of w∗1…w∗m for some finite words w1,…,wm) or when the automaton has finite ambiguity. On labelled Markov chains, the problem can be restated as a ratio total variation distance, which, instead of finding the maximum difference between the probabilities of any two events, finds the maximum ratio between the probabilities of any two events. The problem is related to ε-differential privacy, for which the optimal constant of the big-O notation is exactly exp(ε)

    The Big-O Problem

    Get PDF
    Given two weighted automata, we consider the problem of whether one is big-O of the other, i.e., if the weight of every finite word in the first is not greater than some constant multiple of the weight in the second. We show that the problem is undecidable, even for the instantiation of weighted automata as labelled Markov chains. Moreover, even when it is known that one weighted automaton is big-O of another, the problem of finding or approximating the associated constant is also undecidable. Our positive results show that the big-O problem is polynomial-time solvable for unambiguous automata, coNP-complete for unlabelled weighted automata (i.e., when the alphabet is a single character) and decidable, subject to Schanuel's conjecture, when the language is bounded (i.e., a subset of w1wmw_1^*\dots w_m^* for some finite words w1,,wmw_1,\dots,w_m) or when the automaton has finite ambiguity. On labelled Markov chains, the problem can be restated as a ratio total variation distance, which, instead of finding the maximum difference between the probabilities of any two events, finds the maximum ratio between the probabilities of any two events. The problem is related to ε\varepsilon-differential privacy, for which the optimal constant of the big-O notation is exactly exp(ε)\exp(\varepsilon).</jats:p
    corecore