5,704 research outputs found

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Local Volatility Calibration by Optimal Transport

    Full text link
    The calibration of volatility models from observable option prices is a fundamental problem in quantitative finance. The most common approach among industry practitioners is based on the celebrated Dupire's formula [6], which requires the knowledge of vanilla option prices for a continuum of strikes and maturities that can only be obtained via some form of price interpolation. In this paper, we propose a new local volatility calibration technique using the theory of optimal transport. We formulate a time continuous martingale optimal transport problem, which seeks a martingale diffusion process that matches the known densities of an asset price at two different dates, while minimizing a chosen cost function. Inspired by the seminal work of Benamou and Brenier [1], we formulate the problem as a convex optimization problem, derive its dual formulation, and solve it numerically via an augmented Lagrangian method and the alternative direction method of multipliers (ADMM) algorithm. The solution effectively reconstructs the dynamic of the asset price between the two dates by recovering the optimal local volatility function, without requiring any time interpolation of the option prices

    Multiple Shape Registration using Constrained Optimal Control

    Get PDF
    Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm (LDDMM) only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method is described within the optimal control formalism, and optimality conditions are given, together with the equations that are needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces

    Eulerian and Lagrangian solutions to the continuity and Euler equations with L1L^1 vorticity

    Get PDF
    In the first part of this paper we establish a uniqueness result for continuity equations with velocity field whose derivative can be represented by a singular integral operator of an L1L^1 function, extending the Lagrangian theory in \cite{BouchutCrippa13}. The proof is based on a combination of a stability estimate via optimal transport techniques developed in \cite{Seis16a} and some tools from harmonic analysis introduced in \cite{BouchutCrippa13}. In the second part of the paper, we address a question that arose in \cite{FilhoMazzucatoNussenzveig06}, namely whether 2D Euler solutions obtained via vanishing viscosity are renormalized (in the sense of DiPerna and Lions) when the initial data has low integrability. We show that this is the case even when the initial vorticity is only in~L1L^1, extending the proof for the LpL^p case in \cite{CrippaSpirito15}

    Lagrangian Numerical Methods for Ocean Biogeochemical Simulations

    Full text link
    We propose two closely--related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the P\'eclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection--reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects

    Reconstruction of the primordial Universe by a Monge--Ampere--Kantorovich optimisation scheme

    Get PDF
    A method for the reconstruction of the primordial density fluctuation field is presented. Various previous approaches to this problem rendered {\it non-unique} solutions. Here, it is demonstrated that the initial positions of dark matter fluid elements, under the hypothesis that their displacement is the gradient of a convex potential, can be reconstructed uniquely. In our approach, the cosmological reconstruction problem is reformulated as an assignment problem in optimisation theory. When tested against numerical simulations, our scheme yields excellent reconstruction on scales larger than a few megaparsecs.Comment: 14 pages, 10 figure
    • …
    corecore