590 research outputs found

    Syntactic Monoids in a Category

    Get PDF
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D = sets), the syntactic semirings of Polak (D = semilattices), and the syntactic associative algebras of Reutenauer (D = vector spaces). Assuming that D is an entropic variety of algebras, we prove that the syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the minimal automaton for L in D. Furthermore, in case the variety D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D-monoids

    On Varieties of Automata Enriched with an Algebraic Structure (Extended Abstract)

    Full text link
    Eilenberg correspondence, based on the concept of syntactic monoids, relates varieties of regular languages with pseudovarieties of finite monoids. Various modifications of this correspondence related more general classes of regular languages with classes of more complex algebraic objects. Such generalized varieties also have natural counterparts formed by classes of finite automata equipped with a certain additional algebraic structure. In this survey, we overview several variants of such varieties of enriched automata.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Varieties of Cost Functions.

    Get PDF
    Regular cost functions were introduced as a quantitative generalisation of regular languages, retaining many of their equivalent characterisations and decidability properties. For instance, stabilisation monoids play the same role for cost functions as monoids do for regular languages. The purpose of this article is to further extend this algebraic approach by generalising two results on regular languages to cost functions: Eilenberg's varieties theorem and profinite equational characterisations of lattices of regular languages. This opens interesting new perspectives, but the specificities of cost functions introduce difficulties that prevent these generalisations to be straightforward. In contrast, although syntactic algebras can be defined for formal power series over a commutative ring, no such notion is known for series over semirings and in particular over the tropical semiring

    Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions

    Full text link
    What is the common link, if there is any, between Church-Rosser systems, prefix codes with bounded synchronization delay, and local Rees extensions? The first obvious answer is that each of these notions relates to topics of interest for WORDS: Church-Rosser systems are certain rewriting systems over words, codes are given by sets of words which form a basis of a free submonoid in the free monoid of all words (over a given alphabet) and local Rees extensions provide structural insight into regular languages over words. So, it seems to be a legitimate title for an extended abstract presented at the conference WORDS 2017. However, this work is more ambitious, it outlines some less obvious but much more interesting link between these topics. This link is based on a structure theory of finite monoids with varieties of groups and the concept of local divisors playing a prominent role. Parts of this work appeared in a similar form in conference proceedings where proofs and further material can be found.Comment: Extended abstract of an invited talk given at WORDS 201

    Ehrenfeucht-Fraisse Games on Omega-Terms

    Get PDF
    Fragments of first-order logic over words can often be characterized in terms of finite monoids or finite semigroups. Usually these algebraic descriptions yield decidability of the question whether a given regular language is definable in a particular fragment. An effective algebraic characterization can be obtained from identities of so-called omega-terms. In order to show that a given fragment satisfies some identity of omega-terms, one can use Ehrenfeucht-Fraisse games on word instances of the omega-terms. The resulting proofs often require a significant amount of book-keeping with respect to the constants involved. In this paper we introduce Ehrenfeucht-Fraisse games on omega-terms. To this end we assign a labeled linear order to every omega-term. Our main theorem shows that a given fragment satisfies some identity of omega-terms if and only if Duplicator has a winning strategy for the game on the resulting linear orders. This allows to avoid the book-keeping. As an application of our main result, we show that one can decide in exponential time whether all aperiodic monoids satisfy some given identity of omega-terms, thereby improving a result of McCammond (Int. J. Algebra Comput., 2001)
    • …
    corecore