65 research outputs found

    Resource Optimal Truncated Multipliers for FPGAs

    Get PDF
    International audienceThis proposal presents the resource optimal design of truncated multipliers targeting field programmable gate arrays (FPGAs). In contrast to application specific integrated circuits (ASICs), the design for FPGAs has some distinct design challenges due to many possibilities of computing the partial products using logic-based or DSP-based sub-multipliers. To tackle this, we extend a previously proposed tiling methodology which translates the multiplier design into a geometrical problem: the target multiplier is represented by a board that has to be covered by tiles representing the sub-multipliers. The tiling with the least resources can be found with integer linear programming (ILP). Our extension considers the error of possibly unoccupied positions of the board and determines the tiling with the least resources that respects the maximal allowed error bound. This error bound is chosen such that a faithfully rounded truncated multiplier is obtained. Compared to previous designs that use a fixed number of guard bits or optimize at the level of the dot diagrams, this allows a much better use of sub-multipliers resulting in significant area savings without sacrificing the timing

    Lossy Polynomial Datapath Synthesis

    No full text
    The design of the compute elements of hardware, its datapath, plays a crucial role in determining the speed, area and power consumption of a device. The building blocks of datapath are polynomial in nature. Research into the implementation of adders and multipliers has a long history and developments in this area will continue. Despite such efficient building block implementations, correctly determining the necessary precision of each building block within a design is a challenge. It is typical that standard or uniform precisions are chosen, such as the IEEE floating point precisions. The hardware quality of the datapath is inextricably linked to the precisions of which it is composed. There is, however, another essential element that determines hardware quality, namely that of the accuracy of the components. If one were to implement each of the official IEEE rounding modes, significant differences in hardware quality would be found. But in the same fashion that standard precisions may be unnecessarily chosen, it is typical that components may be constructed to return one of these correctly rounded results, where in fact such accuracy is far from necessary. Unfortunately if a lesser accuracy is permissible then the techniques that exist to reduce hardware implementation cost by exploiting such freedom invariably produce an error with extremely difficult to determine properties. This thesis addresses the problem of how to construct hardware to efficiently implement fixed and floating-point polynomials while exploiting a global error freedom. This is a form of lossy synthesis. The fixed-point contributions include resource minimisation when implementing mutually exclusive polynomials, the construction of minimal lossy components with guaranteed worst case error and a technique for efficient composition of such components. Contributions are also made to how a floating-point polynomial can be implemented with guaranteed relative error.Open Acces

    A COMPARITIVE ANALYSIS OF MULTIPLIERS USING GDI TECHNIQUE

    Get PDF
    A bountiful of adders has been designed over the years in order to simplify the multiplication with various improvements. A comparison of Complementary Pass Transistor Logic and Shanno

    Applications of tensor networks to open problems in many-body quantum physics

    Get PDF

    A computer-aided design for digital filter implementation

    Get PDF
    Imperial Users onl

    On the systematic creation of faithfully rounded truncated multipliers and arrays

    Get PDF
    Often, when performing fixed-point multiplication, it is sufficient to return a faithfully rounded result, i.e., the machine representable number either immediately above or below the arbitrary precision result, if the latter is not exactly representable. Compared to correctly rounded multipliers, i.e., those returning the nearest machine representable number, faithfully rounded multipliers use considerably less silicon area, typically by implementing a truncation scheme within the partial product array. A number of such heuristically inspired schemes exist in the literature, however their use in industrial practice is hampered by the absence of verification, and exhaustive simulation is typically infeasible, e.g., a 32 bit multiplier requires 2 64 simulations. We present three truncated multiplier schemes which subsume the majority of existing schemes and derive both closed form necessary and sufficient conditions for faithful rounding. For two of the schemes we provide closed form expressions for the bit vectors giving rise to the worst-case error and the probability of encountering these inputs during Monte-Carlo simulation. From these expressions, we show how HDL code can be created that performs correct-by-construction faithfully rounded multiplication. We also present a method for truncating an arbitrary array while maintaining faithful rounding, creating two novel truncated multiplier schemes in the process

    From statistical mechanics to machine learning: effective models for neural activity

    Get PDF
    In the retina, the activity of ganglion cells, which feed information through the optic nerve to the rest of the brain, is all that our brain will ever know about the visual world. The interactions between many neurons are essential to processing visual information and a growing body of evidence suggests that the activity of populations of retinal ganglion cells cannot be understood from knowledge of the individual cells alone. Modelling the probability of which cells in a population will fire or remain silent at any moment in time is a difficult problem because of the exponentially many possible states that can arise, many of which we will never even observe in finite recordings of retinal activity. To model this activity, maximum entropy models have been proposed which provide probabilistic descriptions over all possible states but can be fitted using relatively few well-sampled statistics. Maximum entropy models have the appealing property of being the least biased explanation of the available information, in the sense that they maximise the information theoretic entropy. We investigate this use of maximum entropy models and examine the population sizes and constraints that they require in order to learn nontrivial insights from finite data. Going beyond maximum entropy models, we investigate autoencoders, which provide computationally efficient means of simplifying the activity of retinal ganglion cells

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF
    • …
    corecore