23,878 research outputs found

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Synthesis of Topological Quantum Circuits

    Full text link
    Topological quantum computing has recently proven itself to be a very powerful model when considering large- scale, fully error corrected quantum architectures. In addition to its robust nature under hardware errors, it is a software driven method of error corrected computation, with the hardware responsible for only creating a generic quantum resource (the topological lattice). Computation in this scheme is achieved by the geometric manipulation of holes (defects) within the lattice. Interactions between logical qubits (quantum gate operations) are implemented by using particular arrangements of the defects, such as braids and junctions. We demonstrate that junction-based topological quantum gates allow highly regular and structured implementation of large CNOT (controlled-not) gate networks, which ultimately form the basis of the error corrected primitives that must be used for an error corrected algorithm. We present a number of heuristics to optimise the area of the resulting structures and therefore the number of the required hardware resources.Comment: 7 Pages, 10 Figures, 1 Tabl

    Synthesis of Quantum Logic Circuits

    Full text link
    We discuss efficient quantum logic circuits which perform two tasks: (i) implementing generic quantum computations and (ii) initializing quantum registers. In contrast to conventional computing, the latter task is nontrivial because the state-space of an n-qubit register is not finite and contains exponential superpositions of classical bit strings. Our proposed circuits are asymptotically optimal for respective tasks and improve published results by at least a factor of two. The circuits for generic quantum computation constructed by our algorithms are the most efficient known today in terms of the number of expensive gates (quantum controlled-NOTs). They are based on an analogue of the Shannon decomposition of Boolean functions and a new circuit block, quantum multiplexor, that generalizes several known constructions. A theoretical lower bound implies that our circuits cannot be improved by more than a factor of two. We additionally show how to accommodate the severe architectural limitation of using only nearest-neighbor gates that is representative of current implementation technologies. This increases the number of gates by almost an order of magnitude, but preserves the asymptotic optimality of gate counts.Comment: 18 pages; v5 fixes minor bugs; v4 is a complete rewrite of v3, with 6x more content, a theory of quantum multiplexors and Quantum Shannon Decomposition. A key result on generic circuit synthesis has been improved to ~23/48*4^n CNOTs for n qubit

    An extrinsic function-level evolvable hardware approach

    Get PDF
    The function level evolvable hardware approach to synthesize the combinational multiple-valued and binary logic functions is proposed in first time. The new representation of logic gate in extrinsic EHW allows us to describe behaviour of any multi-input multi-output logic function. The circuit is represented in the form of connections and functionalities of a rectangular array of building blocks. Each building block can implement primitive logic function or any multi-input multi-output logic function defined in advance. The method has been tested on evolving logic circuits using half adder, full adder and multiplier. The effectiveness of this approach is investigated for multiple-valued and binary arithmetical functions. For these functions either method appears to be much more efficient than similar approach with two-input one-output cell representation

    Hierarchical probabilistic macromodeling for QCA circuits

    Get PDF
    With the goal of building an hierarchical design methodology for quantum-dot cellular automata (QCA) circuits, we put forward a novel, theoretically sound, method for abstracting the behavior of circuit components in QCA circuit, such as majority logic, lines, wire-taps, cross-overs, inverters, and corners, using macromodels. Recognizing that the basic operation of QCA is probabilistic in nature, we propose probabilistic macromodels for standard QCA circuit elements based on conditional probability characterization, defined over the output states given the input states. Any circuit model is constructed by chaining together the individual logic element macromodels, forming a Bayesian network, defining a joint probability distribution over the whole circuit. We demonstrate three uses for these macromodel-based circuits. First, the probabilistic macromodels allow us to model the logical function of QCA circuits at an abstract level - the "circuit" level - above the current practice of layout level in a time and space efficient manner. We show that the circuit level model is orders of magnitude faster and requires less space than layout level models, making the design and testing of large QCA circuits efficient and relegating the costly full quantum-mechanical simulation of the temporal dynamics to a later stage in the design process. Second, the probabilistic macromodels abstract crucial device level characteristics such as polarization and low-energy error state configurations at the circuit level. We demonstrate how this macromodel-based circuit level representation can be used to infer the ground state probabilities, i.e., cell polarizations, a crucial QCA parameter. This allows us to study the thermal behavior of QCA circuits at a higher level of abstraction. Third, we demonstrate the use of these macromodels for error analysis. We show that low-energy state configurations of the macromodel circuit match those of the layout level, thus allowing us to isolate weak p- oints in circuits design at the circuit level itsel

    Effective electrothermal analysis of electronic devices and systems with parameterized macromodeling

    Get PDF
    We propose a parameterized macromodeling methodology to effectively and accurately carry out dynamic electrothermal (ET) simulations of electronic components and systems, while taking into account the influence of key design parameters on the system behavior. In order to improve the accuracy and to reduce the number of computationally expensive thermal simulations needed for the macromodel generation, a decomposition of the frequency-domain data samples of the thermal impedance matrix is proposed. The approach is applied to study the impact of layout variations on the dynamic ET behavior of a state-of-the-art 8-finger AlGaN/GaN high-electron mobility transistor grown on a SiC substrate. The simulation results confirm the high accuracy and computational gain obtained using parameterized macromodels instead of a standard method based on iterative complete numerical analysis
    • …
    corecore