981 research outputs found

    Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity

    Full text link
    The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for wideband systems in the power-limited regime, which is, for example, a practically relevant mode of operation for the analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the tradeoff between energy efficiency and spectral efficiency (known as the power-bandwidth tradeoff) in a wideband linear multihop network in which transmissions employ orthogonal frequency-division multiplexing (OFDM) modulation and are affected by quasi-static, frequency-selective fading. Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop relaying techniques, we characterize the impact of routing with spatial reuse on the statistical properties of the end-to-end conditional mutual information (conditioned on the specific values of the channel fading parameters and therefore treated as a random variable) and on the energy and spectral efficiency measures of the wideband regime. Our analysis particularly deals with the convergence of these end-to-end performance measures in the case of large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b} and named as ``multihop diversity''. Our results demonstrate the realizability of the multihop diversity advantages in the case of routing with spatial reuse for wideband OFDM systems under wireless channel effects such as path-loss and quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna, Ital

    Performance analysis of cooperative relay networks in presence of interference

    Full text link
    In the past decade, cooperative communication has emerged as an attractive technique for overcoming the shortcomings of point-to-point wireless communications systems. Cooperative relaying improves the performance of wireless networks by forming an array of multiple independent virtual sources transmitting the same information as the source node. In addition, when relays are deployed near the edge of the network, they can provide additional coverage in network dead spots. Interference in the network can also be reduced in cooperative communications systems as the nodes can transmit at lower power levels compared to equivalent point-to-point communications systems. Optimum design of a cooperative network requires an accurate understanding of all factors affecting performance. In order to parameterize the performance of cooperative systems, this thesis introduces mathematical models for different performance metrics, such as symbol error probability, outage probability and random coding error exponent, in order to analytically estimate network capacity. A dual-hop network is introduced as the most basic type of relay network. Random coding error exponent results have been obtained using this simple network model are presented along with corresponding channel capacity estimates based on the assumption of Gaussian input codes. Next, a general multihop network error and outage performance model are developed. Detailed mathematical and statistical models for interference relay networks are presented. The basic statistical parameters, cumulative distribution function and probability density function for interference cooperative dual hop relay networks are derived and explored. A partial formulation for the random coding error exponent (RCEE) result is also presented. Simulation results over Rayleigh and Nakagami-m fading channel models are included in each chapter for all of the selected performance metrics in order to validate the theoretical analysis, under the assumption that channels are flat over the duration of one symbol transmission. These results are in close agreement with the predictions of the analytical models.University of Technology, Sydney. Faculty of Engineering and Information Technology

    Decentralized Dynamic Hop Selection and Power Control in Cognitive Multi-hop Relay Systems

    Full text link
    In this paper, we consider a cognitive multi-hop relay secondary user (SU) system sharing the spectrum with some primary users (PU). The transmit power as well as the hop selection of the cognitive relays can be dynamically adapted according to the local (and causal) knowledge of the instantaneous channel state information (CSI) in the multi-hop SU system. We shall determine a low complexity, decentralized algorithm to maximize the average end-to-end throughput of the SU system with dynamic spatial reuse. The problem is challenging due to the decentralized requirement as well as the causality constraint on the knowledge of CSI. Furthermore, the problem belongs to the class of stochastic Network Utility Maximization (NUM) problems which is quite challenging. We exploit the time-scale difference between the PU activity and the CSI fluctuations and decompose the problem into a master problem and subproblems. We derive an asymptotically optimal low complexity solution using divide-and-conquer and illustrate that significant performance gain can be obtained through dynamic hop selection and power control. The worst case complexity and memory requirement of the proposed algorithm is O(M^2) and O(M^3) respectively, where MM is the number of SUs
    • …
    corecore