40 research outputs found

    Restoration of multichannel microwave radiometric images

    Get PDF
    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation

    An enhanced resolution brightness temperature product for future conical scanning microwave radiometers

    Get PDF
    An enhanced spatial resolution brightness temperature product is proposed for future conical scan microwave radiometers. The technique is developed for Copernicus Imaging Microwave Radiometer (CIMR) measurements that are simulated using the CIMR antenna pattern at the L-band and the measurement geometry proposed in the Phase A study led by Airbus. An inverse antenna pattern reconstruction method is proposed. Reconstructions are obtained using two CIMR configurations, namely, using measurements collected at L-band by the forward (FWD) scans only, and combining forward and backward (FWD+BWD) scans. Two spatial grids are adopted, namely, 3 km x 3 km and 36 km x 36 km. Simulation results, referred to synthetic and realistic reference brightness fields, demonstrate the soundness of the proposed scheme that provides brightness temperature fields reconstructed at a spatial resolution up to ~ 1.9 times finer than the measured field when using the FWD+BWD combination.The work of Claudio Estatico was supported in part by the Gruppo Nazionale di Calcolo Scientifico–Istituto Nazionale di Alta Matematica (GNCS-INDAM), Italy. This work has been produced for the European Space Agency (ESA) in the frame of the Copernicus Program as a partnership between ESA and the European Commission.Peer ReviewedPostprint (author's final draft

    Imaging for a Forward Scanning Automotive Synthetic Aperture Radar

    Get PDF

    Microwave remote sensing of snow and environment

    Get PDF
    Hemispheric snow extent and snow mass are two important parameters affecting the water cycle, carbon cycle and the radiation balance in particular at the high latitudes. In this dissertation these topics have been investigated focusing on the mapping of snow clearance day (melt-off day) and Snow Water Equivalent (SWE) by applying spaceborne microwave radiometer instruments. New algorithms have been developed and existing ones have been further advanced. Specific attention has been paid to estimate snow in boreal forests. This work has resulted in Climate Data Records (CDRs) of snow clearance day and daily values of SWE. Data are available for the entire Northern Hemisphere covering more than three decades. The developed CDRs are relevant for climate research, for example concerning the modeling of Earth System processes. CDR on snow clearance day can be used to map the CO2 balance between the biosphere and atmosphere in the case of boreal forests, which is demonstrated in the thesis. Further, methodologies to assess snow mass in terms of SWE for hemispherical and regional scales have been developed. The developed methodologies have also resulted in the establishment of new Near-Real-Time (NRT) satellite data services for hydrological end-use. In hydrology SWE data are used to enhance the performance of river discharge forecasts, which is highly important for hydropower industry and flood prevention activities

    Satellite Image Enhancement Using Framelet Transform And Non-Local Means Filter

    Get PDF
    Abstract: Resolution enhancement (RE) schemes suffer from the drawback of losing high frequency contents (which results in blurring). The wavelet-transform-based RE scheme, generates artifacts (due to a shift-variant property). Therefore a framelet-domain approach and non-local means (NLM) filter is proposed for RE of the satellite images. A satellite input image is decomposed by Framelet transform ( FT) to obtain high-frequency subbands. The high-frequency subbands and the low-resolution (LR) input image are interpolated using the Lanczos interpolator. The high frequency subbands are passed through an NLM (despite of its nearly shift invarianc

    Millimeter wave imaging : a historical review

    Get PDF
    The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.Publisher PD

    Passive Millimeter-Wave Imaging Based on Subharmonic Self-Oscillating Mixing

    Get PDF
    RÉSUMÉ Le sujet général de la thèse de doctorat présentée réside dans la recherche sur des nouvelles méthodes dans le domaine de l’imagerie aux micro-ondes, en particulier l’imagerie passive aux ondes millimétriques, qui est aussi connue sous le nom d’imagerie radiométrique. Cette dernière technique est utilisée pour former une image d’une scène particulière en capturant la radiation électromagnétique émise naturellement par chaque objet à la bande de fréquence des micro-ondes / ondes millimétriques, similaire à la façon dont une photographie est prise en capturant la radiation aux fréquences optiques. De cette façon, une image d’ondes millimétriques peut être formée et utilisée pour tracer différentes caractéristiques de la scène ou de l’objet, qui sont implicites à la bande de fréquences des micro-ondes / ondes millimétriques. L’imagerie à ondes millimétriques représente un des sujets d’actualité des plus prometteurs dans le domaine de la conception des capteurs à haute fréquence. L’utilité de cette technique réside surtout dans les particularités des phénomènes de l’atténuation atmosphérique permettant aux ondes millimétriques de pénétrer à travers une grande variété de conditions de mauvaise visibilité, comme par exemple la brume, le brouillard, les nuages, la fumée et les tempêtes de sable, ainsi que la capacité de se propager à travers des vêtements et certains autres matériaux. Outre ces avantages par rapport aux systèmes infrarouges ou optiques, les systèmes à ondes millimétriques surpassent les systèmes micro-ondes à plus basse fréquence par leurs longueurs d’ondes plus petites permettant d’atteindre une plus haute résolution. Pour leur mise en application, des fenêtres de propagation à 35, 77, 94, 140 et 220 GHz ont été assignées. Les domaines d’application présents et futurs sont principalement associés aux infrastructures militaires et commerciales. Ceux-ci englobent la surveillance, la navigation et la technologie automobile, ainsi que l’atterrissage des avions et le suivi de la circulation dans le brouillard sur les autoroutes. De plus, la demande de plus en plus grande en systèmes de détection de sécurité aux aéroports et d’autres lieux publics crée une demande toujours plus grande en scanners automatisés en temps réel dotés des caractéristiques suivantes : ne présenter aucun risque pour la santé, générer un nombre réduit de fausses alertes et permettre la détection des armes cachées ou des objets dangereux à travers les vêtements.----------ABSTRACT The broad topic of the presented Ph.D. thesis consists in the research on novel methods in the field of microwave imaging, in particular the so-called passive millimetre-wave imaging, which is also referred to as radiometric imaging. This latter technique is used to form an image of a particular scene by means of sensing the natural electromagnetic radiation emitted by any object at microwave / millimetre-wave wavelengths, similar to the way in which a photograph is captured by sensing the radiation occurring at optical wavelengths. In this way, different characteristics of the observed scene or object, which are inherent to the microwave / millimetre-wave frequency range, can be mapped in the form of an image. Millimetre-wave imaging represents one of today’s most promising research topics in the field of high frequency sensor design. The usefulness of this technique lies in particular in the peculiarities of atmospheric attenuation phenomenologies allowing millimetre-waves to penetrate through a variety of low-visibility conditions such as haze, fog, clouds, smoke, and sandstorms and furthermore in the ability to propagate through clothing and a number of other materials. Together with these advantages over infrared and optical systems, moreover, millimetre-wave systems outperform imagers at the lower microwave frequency range due to their smaller wavelengths and the thus achievable higher resolution. For their implementation, propagation windows at 35, 77, 94, 140, and 220 GHz are generally allocated. Present and future applications consist in both military and commercial infrastructure fields such as in surveillance, navigation, and automotive technology, as well as aircraft landing or highway traffic monitoring in fog. Moreover, the ever increasing demand for security screening systems at airports and other public environments creates a growing need for health-hazardless automated real-time scanners with minimized false alarms, and millimetre-wave imaging offering the ability to detect concealed weapons or hazardous objects through clothing material represents an excellent choice for this purpose. Furthermore, millimetre-wave imaging is applied to biomedical imaging such as the location of hot spots, tumours, or other anomalies in the body. Additional applications consist in non-destructive material testing and geological examinations such as the sensing of the Earth’s atmosphere, oil spill detection, research on volcano activity, or meteorology
    corecore