299 research outputs found

    On the Subexponential Time Complexity of CSP

    Full text link
    A CSP with n variables ranging over a domain of d values can be solved by brute-force in d^n steps (omitting a polynomial factor). With a more careful approach, this trivial upper bound can be improved for certain natural restrictions of the CSP. In this paper we establish theoretical limits to such improvements, and draw a detailed landscape of the subexponential-time complexity of CSP. We first establish relations between the subexponential-time complexity of CSP and that of other problems, including CNF-Sat. We exploit this connection to provide tight characterizations of the subexponential-time complexity of CSP under common assumptions in complexity theory. For several natural CSP parameters, we obtain threshold functions that precisely dictate the subexponential-time complexity of CSP with respect to the parameters under consideration. Our analysis provides fundamental results indicating whether and when one can significantly improve on the brute-force search approach for solving CSP

    Independent Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time) Approximation Hardnesses

    Full text link
    We present a series of almost settled inapproximability results for three fundamental problems. The first in our series is the subexponential-time inapproximability of the maximum independent set problem, a question studied in the area of parameterized complexity. The second is the hardness of approximating the maximum induced matching problem on bounded-degree bipartite graphs. The last in our series is the tight hardness of approximating the k-hypergraph pricing problem, a fundamental problem arising from the area of algorithmic game theory. In particular, assuming the Exponential Time Hypothesis, our two main results are: - For any r larger than some constant, any r-approximation algorithm for the maximum independent set problem must run in at least 2^{n^{1-\epsilon}/r^{1+\epsilon}} time. This nearly matches the upper bound of 2^{n/r} (Cygan et al., 2008). It also improves some hardness results in the domain of parameterized complexity (e.g., Escoffier et al., 2012 and Chitnis et al., 2013) - For any k larger than some constant, there is no polynomial time min (k^{1-\epsilon}, n^{1/2-\epsilon})-approximation algorithm for the k-hypergraph pricing problem, where n is the number of vertices in an input graph. This almost matches the upper bound of min (O(k), \tilde O(\sqrt{n})) (by Balcan and Blum, 2007 and an algorithm in this paper). We note an interesting fact that, in contrast to n^{1/2-\epsilon} hardness for polynomial-time algorithms, the k-hypergraph pricing problem admits n^{\delta} approximation for any \delta >0 in quasi-polynomial time. This puts this problem in a rare approximability class in which approximability thresholds can be improved significantly by allowing algorithms to run in quasi-polynomial time.Comment: The full version of FOCS 201

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(⋅\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(⋅\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    Fast counting with tensor networks

    Full text link
    We introduce tensor network contraction algorithms for counting satisfying assignments of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula as a tensor network, whose full contraction yields the number of satisfying assignments of that formula, and use graph theoretical methods to determine favorable orders of contraction. We employ our heuristics for the solution of #P-hard counting boolean satisfiability (#SAT) problems, namely monotone #1-in-3SAT and #Cubic-Vertex-Cover, and find that they outperform state-of-the-art solvers by a significant margin.Comment: v2: added results for monotone #1-in-3SAT; published versio

    Fine-grained dichotomies for the Tutte plane and Boolean #CSP

    Get PDF
    Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahl\'en [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line y=1y=1, which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given nn-vertex graph cannot be determined in time exp(o(n))exp(o(n)) unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the number of independent sets in bipartite graphs with nn vertices cannot be computed in time exp(o(n))exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean [7] and transfer it to systems of linear equations that might not directly correspond to interpolation.Comment: 16 pages, 1 figur

    Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs

    Full text link
    Building on work of Cai, F\"urer, and Immerman \cite{CFI92}, we show two hardness results for the Graph Isomorphism problem. First, we show that there are pairs of nonisomorphic nn-vertex graphs GG and HH such that any sum-of-squares (SOS) proof of nonisomorphism requires degree Ω(n)\Omega(n). In other words, we show an Ω(n)\Omega(n)-round integrality gap for the Lasserre SDP relaxation. In fact, we show this for pairs GG and HH which are not even (1−10−14)(1-10^{-14})-isomorphic. (Here we say that two nn-vertex, mm-edge graphs GG and HH are α\alpha-isomorphic if there is a bijection between their vertices which preserves at least αm\alpha m edges.) Our second result is that under the {\sc R3XOR} Hypothesis \cite{Fei02} (and also any of a class of hypotheses which generalize the {\sc R3XOR} Hypothesis), the \emph{robust} Graph Isomorphism problem is hard. I.e.\ for every ϵ>0\epsilon > 0, there is no efficient algorithm which can distinguish graph pairs which are (1−ϵ)(1-\epsilon)-isomorphic from pairs which are not even (1−ϵ0)(1-\epsilon_0)-isomorphic for some universal constant ϵ0\epsilon_0. Along the way we prove a robust asymmetry result for random graphs and hypergraphs which may be of independent interest

    Why are CSPs Based on Partition Schemes Computationally Hard?

    Get PDF
    Many computational problems arising in, for instance, artificial intelligence can be realized as infinite-domain constraint satisfaction problems (CSPs) based on partition schemes: a set of pairwise disjoint binary relations (containing the equality relation) whose union spans the underlying domain and which is closed under converse. We first consider partition schemes that contain a strict partial order and where the constraint language contains all unions of the basic relations; such CSPs are frequently occurring in e.g. temporal and spatial reasoning. We identify three properties of such orders which, when combined, are sufficient to establish NP-hardness of the CSP. This result explains, in a uniform way, many existing hardness results from the literature. More importantly, this result enables us to prove that CSPs of this kind are not solvable in subexponential time unless the exponential-time hypothesis (ETH) fails. We continue by studying constraint languages based on partition schemes but where relations are built using disjunctions instead of unions; such CSPs appear naturally when analysing first-order definable constraint languages. We prove that such CSPs are NP-hard even in very restricted settings and that they are not solvable in subexponential time under the randomised ETH. In certain cases, we can additionally show that they cannot be solved in O(c^n) time for any c >= 0
    • …
    corecore