3,043 research outputs found

    Continuous-time integral dynamics for Aggregative Game equilibrium seeking

    Get PDF
    In this paper, we consider continuous-time semi-decentralized dynamics for the equilibrium computation in a class of aggregative games. Specifically, we propose a scheme where decentralized projected-gradient dynamics are driven by an integral control law. To prove global exponential convergence of the proposed dynamics to an aggregative equilibrium, we adopt a quadratic Lyapunov function argument. We derive a sufficient condition for global convergence that we position within the recent literature on aggregative games, and in particular we show that it improves on established results

    Nash and Wardrop equilibria in aggregative games with coupling constraints

    Full text link
    We consider the framework of aggregative games, in which the cost function of each agent depends on his own strategy and on the average population strategy. As first contribution, we investigate the relations between the concepts of Nash and Wardrop equilibrium. By exploiting a characterization of the two equilibria as solutions of variational inequalities, we bound their distance with a decreasing function of the population size. As second contribution, we propose two decentralized algorithms that converge to such equilibria and are capable of coping with constraints coupling the strategies of different agents. Finally, we study the applications of charging of electric vehicles and of route choice on a road network.Comment: IEEE Trans. on Automatic Control (Accepted without changes). The first three authors contributed equall

    Distributed Learning for Stochastic Generalized Nash Equilibrium Problems

    Full text link
    This work examines a stochastic formulation of the generalized Nash equilibrium problem (GNEP) where agents are subject to randomness in the environment of unknown statistical distribution. We focus on fully-distributed online learning by agents and employ penalized individual cost functions to deal with coupled constraints. Three stochastic gradient strategies are developed with constant step-sizes. We allow the agents to use heterogeneous step-sizes and show that the penalty solution is able to approach the Nash equilibrium in a stable manner within O(μmax)O(\mu_\text{max}), for small step-size value μmax\mu_\text{max} and sufficiently large penalty parameters. The operation of the algorithm is illustrated by considering the network Cournot competition problem
    • …
    corecore