1,267 research outputs found

    Algorithm 959: VBF: A Library of C plus plus Classes for Vector Boolean Functions in Cryptography

    Full text link
    VBF is a collection of C++ classes designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This implementation uses the NTL library from Victor Shoup, adding new modules that call NTL functions and complement the existing ones, making it better suited to cryptography. The class representing a vector Boolean function can be initialized by several alternative types of data structures such as Truth Table, Trace Representation, and Algebraic Normal Form (ANF), among others. The most relevant cryptographic criteria for both block and stream ciphers as well as for hash functions can be evaluated with VBF: it obtains the nonlinearity, linearity distance, algebraic degree, linear structures, and frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions are presented. Finally, three real applications of the library are described: the first one analyzes the KASUMI block cipher, the second one analyzes the Mini-AES cipher, and the third one finds Boolean functions with very high nonlinearity, a key property for robustness against linear attacks

    Enhancing cryptographic primitives with techniques from error correcting codes

    Get PDF

    On applications of simulated annealing to cryptology

    Get PDF
    Boolean functions are critical building blocks of symmetric-key ciphers. In most cases, the security of a cipher against a particular kind of attacks can be explained by the existence of certain properties of its underpinning Boolean functions. Therefore, the design of appropriate functions has received significant attention from researchers for several decades. Heuristic methods have become very powerful tools for designing such functions. In this thesis, we apply simulated annealing methods to construct Boolean functions with particular properties. Our results meet or exceed the best results of available theoretical constructions and/or heuristic searches in the literature, including a 10-variable balanced Boolean function with resiliency degree 2, algebraic degree 7, and nonlinearity 488 for the first time. This construction affirmatively answers the open problem about the existence of such functions. This thesis also includes results of cryptanalysis for symmetric ciphers, such as Geffe cipher and TREYFER cipher

    Numerical modelling for flexible pavement materials applying advanced finite element approach to develop Mechanistic-Empirical design procedure

    Get PDF
    The mechanistic-empirical design method of flexible pavement is studied. Series of numerical simulation on different combination of pavement layers is conducted. Two different loading combinations are examined and different materials properties are included. Finite element method is employed to consider especially developed constitutive model to reflect shakedown behaviour of granular materials used in base layers. In final step of simulation effects of soil-asphalt interaction is studied. Results are compared and concluded

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the recently proposed algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Large substitution boxes with efficient combinational implementations

    Get PDF
    At a fundamental level, the security of symmetric key cryptosystems ties back to Claude Shannon\u27s properties of confusion and diffusion. Confusion can be defined as the complexity of the relationship between the secret key and ciphertext, and diffusion can be defined as the degree to which the influence of a single input plaintext bit is spread throughout the resulting ciphertext. In constructions of symmetric key cryptographic primitives, confusion and diffusion are commonly realized with the application of nonlinear and linear operations, respectively. The Substitution-Permutation Network design is one such popular construction adopted by the Advanced Encryption Standard, among other block ciphers, which employs substitution boxes, or S-boxes, for nonlinear behavior. As a result, much research has been devoted to improving the cryptographic strength and implementation efficiency of S-boxes so as to prohibit cryptanalysis attacks that exploit weak constructions and enable fast and area-efficient hardware implementations on a variety of platforms. To date, most published and standardized S-boxes are bijective functions on elements of 4 or 8 bits. In this work, we explore the cryptographic properties and implementations of 8 and 16 bit S-boxes. We study the strength of these S-boxes in the context of Boolean functions and investigate area-optimized combinational hardware implementations. We then present a variety of new 8 and 16 bit S-boxes that have ideal cryptographic properties and enable low-area combinational implementations
    corecore