8,203 research outputs found

    Lattices with non-Shannon Inequalities

    Full text link
    We study the existence or absence of non-Shannon inequalities for variables that are related by functional dependencies. Although the power-set on four variables is the smallest Boolean lattice with non-Shannon inequalities there exist lattices with many more variables without non-Shannon inequalities. We search for conditions that ensures that no non-Shannon inequalities exist. It is demonstrated that 3-dimensional distributive lattices cannot have non-Shannon inequalities and planar modular lattices cannot have non-Shannon inequalities. The existence of non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of a group.Comment: Ten pages. Submitted to ISIT 2015. The appendix will not appear in the proceeding

    A Rule-Based Approach to Analyzing Database Schema Objects with Datalog

    Full text link
    Database schema elements such as tables, views, triggers and functions are typically defined with many interrelationships. In order to support database users in understanding a given schema, a rule-based approach for analyzing the respective dependencies is proposed using Datalog expressions. We show that many interesting properties of schema elements can be systematically determined this way. The expressiveness of the proposed analysis is exemplarily shown with the problem of computing induced functional dependencies for derived relations. The propagation of functional dependencies plays an important role in data integration and query optimization but represents an undecidable problem in general. And yet, our rule-based analysis covers all relational operators as well as linear recursive expressions in a systematic way showing the depth of analysis possible by our proposal. The analysis of functional dependencies is well-integrated in a uniform approach to analyzing dependencies between schema elements in general.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Characterization of order-like dependencies with formal concept analysis

    Get PDF
    Functional Dependencies (FDs) play a key role in many fields of the relational database model, one of the most widely used database systems. FDs have also been applied in data analysis, data quality, knowl- edge discovery and the like, but in a very limited scope, because of their fixed semantics. To overcome this limitation, many generalizations have been defined to relax the crisp definition of FDs. FDs and a few of their generalizations have been characterized with Formal Concept Analysis which reveals itself to be an interesting unified framework for charac- terizing dependencies, that is, understanding and computing them in a formal way. In this paper, we extend this work by taking into account order-like dependencies. Such dependencies, well defined in the database field, consider an ordering on the domain of each attribute, and not sim- ply an equality relation as with standard FDs.Peer ReviewedPostprint (published version

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Full text link
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Get PDF
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    A New Statistical Parser Based on Bigram Lexical Dependencies

    Full text link
    This paper describes a new statistical parser which is based on probabilities of dependencies between head-words in the parse tree. Standard bigram probability estimation techniques are extended to calculate probabilities of dependencies between pairs of words. Tests using Wall Street Journal data show that the method performs at least as well as SPATTER (Magerman 95, Jelinek et al 94), which has the best published results for a statistical parser on this task. The simplicity of the approach means the model trains on 40,000 sentences in under 15 minutes. With a beam search strategy parsing speed can be improved to over 200 sentences a minute with negligible loss in accuracy.Comment: 8 pages, to appear in Proceedings of ACL 96. Uuencoded gz-compressed postscript file created by csh script uufile
    • …
    corecore