257 research outputs found

    The Tail-Recursive Fragment of Timed Recursive CTL

    Get PDF
    Timed Recursive CTL (TRCTL) was recently proposed as a merger of two extensions of the well-known branching-time logic CTL: Timed CTL on one hand is interpreted over real-time systems like timed automata, and Recursive CTL (RecCTL) on the other hand obtains high expressiveness through the introduction of a recursion operator. Model checking for the resulting logic is known to be 2-EXPTIME-complete. The aim of this paper is to investigate the possibility to obtain a fragment of lower complexity without losing too much expressive power. It is obtained by a syntactic property called "tail-recursiveness" that restricts the way that recursive formulas can be built. This restriction is known to decrease the complexity of model checking by half an exponential in the untimed setting. We show that this also works in the real-time world: model checking for the tail-recursive fragment of TRCTL is EXPSPACE-complete. The upper bound is obtained by a standard untiming construction via region graphs, and rests on the known complexity of tail-recursive fragments of higher-order modal logics. The lower bound is established by a reduction from a suitable tiling problem

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Domain-independent queries on databases with external functions

    Get PDF
    AbstractWe study queries over databases with external functions, from a language-independent perspective. The input and output types of the external functions can be atomic values, flat relations, nested relations, etc. We propose a new notion of data-independence for queries on databases with external functions, which extends naturally the notion of generic queries on relational databases without external functions. In contrast to previous such notions, ours can also be applied to queries expressed in query languages with iterations. Next, we propose two natural notions of computability for queries over databases with external functions, and prove that they are equivalent, under reasonable assumptions. Thus, our definition of computability is robust. Finally, based on this equivalence result, we give examples of complete query languages with external functions. A byproduct of the equivalence result is the fact that Relational Machines (Abiteboul and V. Vianu, 1991; Abiteboul et al., 1992) are complete on nested relations: they are known not to be complete on flat relations

    Coalgebraic Weak Bisimulation from Recursive Equations over Monads

    Full text link
    Strong bisimulation for labelled transition systems is one of the most fundamental equivalences in process algebra, and has been generalised to numerous classes of systems that exhibit richer transition behaviour. Nearly all of the ensuing notions are instances of the more general notion of coalgebraic bisimulation. Weak bisimulation, however, has so far been much less amenable to a coalgebraic treatment. Here we attempt to close this gap by giving a coalgebraic treatment of (parametrized) weak equivalences, including weak bisimulation. Our analysis requires that the functor defining the transition type of the system is based on a suitable order-enriched monad, which allows us to capture weak equivalences by least fixpoints of recursive equations. Our notion is in agreement with existing notions of weak bisimulations for labelled transition systems, probabilistic and weighted systems, and simple Segala systems.Comment: final versio

    A Fixpoint Semantics of Event Systems with and without Fairness Assumptions

    Full text link
    We present a fixpoint semantics of event systems. The semantics is presented in a general framework without concerns of fairness. Soundness and completeness of rules for deriving "leads-to" properties are proved in this general framework. The general framework is instantiated to minimal progress and weak fairness assumptions and similar results are obtained. We show the power of these results by deriving sufficient conditions for "leads-to" under minimal progress proving soundness of proof obligations without reasoning over state-traces

    A refinement calculus for nondeterministic expressions

    Get PDF

    Weak bisimilarity coalgebraically

    Get PDF
    We argue that weak bisimilarity of processes can be conveniently captured in a semantic domain by a combination of traces and coalgebraic finality, in such a way that important process algebra aspects such as parallel composition and recursion can be represented compositionally. We illustrate the usefulness of our approach by providing a fully-abstract denotational semantics for CCS under weak bisimilarity

    Weak bisimilarity coalgebraically

    Get PDF
    We argue that weak bisimilarity of processes can be conveniently captured in a semantic domain by a combination of traces and coalgebraic finality, in such a way that important process algebra aspects such as parallel composition and recursion can be represented compositionally. We illustrate the usefulness of our approach by providing a fully-abstract denotational semantics for CCS under weak bisimilarity
    • …
    corecore