3,937 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Wavelet probabilistic neural networks

    Get PDF
    In this article, a novel wavelet probabilistic neural network (WPNN), which is a generative-learning wavelet neural network that relies on the wavelet-based estimation of class probability densities, is proposed. In this new neural network approach, the number of basis functions employed is independent of the number of data inputs, and in that sense, it overcomes the well-known drawback of traditional probabilistic neural networks (PNNs). Since the parameters of the proposed network are updated at a low and constant computational cost, it is particularly aimed at data stream classification and anomaly detection in off-line settings and online environments where the length of data is assumed to be unconstrained. Both synthetic and real-world datasets are used to assess the proposed WPNN. Significant performance enhancements are attained compared to state-of-the-art algorithms

    Improving the Practicality of Model-Based Reinforcement Learning: An Investigation into Scaling up Model-Based Methods in Online Settings

    Get PDF
    This thesis is a response to the current scarcity of practical model-based control algorithms in the reinforcement learning (RL) framework. As of yet there is no consensus on how best to integrate imperfect transition models into RL whilst mitigating policy improvement instabilities in online settings. Current state-of-the-art policy learning algorithms that surpass human performance often rely on model-free approaches that enjoy unmitigated sampling of transition data. Model-based RL (MBRL) instead attempts to distil experience into transition models that allow agents to plan new policies without needing to return to the environment and sample more data. The initial focus of this investigation is on kernel conditional mean embeddings (CMEs) (Song et al., 2009) deployed in an approximate policy iteration (API) algorithm (GrĂŒnewĂ€lder et al., 2012a). This existing MBRL algorithm boasts theoretically stable policy updates in continuous state and discrete action spaces. The Bellman operator’s value function and (transition) conditional expectation are modelled and embedded respectively as functions in a reproducing kernel Hilbert space (RKHS). The resulting finite-induced approximate pseudo-MDP (Yao et al., 2014a) can be solved exactly in a dynamic programming algorithm with policy improvement suboptimality guarantees. However model construction and policy planning scale cubically and quadratically respectively with the training set size, rendering the CME impractical for sampleabundant tasks in online settings. Three variants of CME API are investigated to strike a balance between stable policy updates and reduced computational complexity. The first variant models the value function and state-action representation explicitly in a parametric CME (PCME) algorithm with favourable computational complexity. However a soft conservative policy update technique is developed to mitigate policy learning oscillations in the planning process. The second variant returns to the non-parametric embedding and contributes (along with external work) to the compressed CME (CCME); a sparse and computationally more favourable CME. The final variant is a fully end-to-end differentiable embedding trained with stochastic gradient updates. The value function remains modelled in an RKHS such that backprop is driven by a non-parametric RKHS loss function. Actively compressed CME (ACCME) satisfies the pseudo-MDP contraction constraint using a sparse softmax activation function. The size of the pseudo-MDP (i.e. the size of the embedding’s last layer) is controlled by sparsifying the last layer weight matrix by extending the truncated gradient method (Langford et al., 2009) with group lasso updates in a novel ‘use it or lose it’ neuron pruning mechanism. Surprisingly this technique does not require extensive fine-tuning between control tasks

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page

    Generalization Through the Lens of Learning Dynamics

    Full text link
    A machine learning (ML) system must learn not only to match the output of a target function on a training set, but also to generalize to novel situations in order to yield accurate predictions at deployment. In most practical applications, the user cannot exhaustively enumerate every possible input to the model; strong generalization performance is therefore crucial to the development of ML systems which are performant and reliable enough to be deployed in the real world. While generalization is well-understood theoretically in a number of hypothesis classes, the impressive generalization performance of deep neural networks has stymied theoreticians. In deep reinforcement learning (RL), our understanding of generalization is further complicated by the conflict between generalization and stability in widely-used RL algorithms. This thesis will provide insight into generalization by studying the learning dynamics of deep neural networks in both supervised and reinforcement learning tasks.Comment: PhD Thesi
    • 

    corecore