9,879 research outputs found

    On the strong chromatic number of random graphs

    Full text link
    Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of V(G) into disjoint sets V_1 \cup ... \cup V_r, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_i. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding k \lceil n/k \rceil - n isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph G(n, p). In the dense case when p >> n^{-1/3}, we prove that the strong chromatic number is a.s. concentrated on one value \Delta+1, where \Delta is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.Comment: 16 page

    Distance edge-colourings and matchings

    Get PDF
    AbstractWe consider a distance generalisation of the strong chromatic index and the maximum induced matching number. We study graphs of bounded maximum degree and Erdős–Rényi random graphs. We work in three settings. The first is that of a distance generalisation of an Erdős–Nešetřil problem. The second is that of an upper bound on the size of a largest distance matching in a random graph. The third is that of an upper bound on the distance chromatic index for sparse random graphs. One of our results gives a counterexample to a conjecture of Skupień

    An asymptotic bound for the strong chromatic number

    Get PDF
    The strong chromatic number χs(G)\chi_{\text{s}}(G) of a graph GG on nn vertices is the least number rr with the following property: after adding r⌈n/r⌉−nr \lceil n/r \rceil - n isolated vertices to GG and taking the union with any collection of spanning disjoint copies of KrK_r in the same vertex set, the resulting graph has a proper vertex-colouring with rr colours. We show that for every c>0c > 0 and every graph GG on nn vertices with Δ(G)≥cn\Delta(G) \ge cn, χs(G)≤(2+o(1))Δ(G)\chi_{\text{s}}(G) \leq (2 + o(1)) \Delta(G), which is asymptotically best possible.Comment: Minor correction, accepted for publication in Combin. Probab. Compu

    From the Ising and Potts models to the general graph homomorphism polynomial

    Full text link
    In this note we study some of the properties of the generating polynomial for homomorphisms from a graph to at complete weighted graph on qq vertices. We discuss how this polynomial relates to a long list of other well known graph polynomials and the partition functions for different spin models, many of which are specialisations of the homomorphism polynomial. We also identify the smallest graphs which are not determined by their homomorphism polynomials for q=2q=2 and q=3q=3 and compare this with the corresponding minimal examples for the UU-polynomial, which generalizes the well known Tutte-polynomal.Comment: V2. Extended versio

    Some results on (a:b)-choosability

    Get PDF
    A solution to a problem of Erd\H{o}s, Rubin and Taylor is obtained by showing that if a graph GG is (a:b)(a:b)-choosable, and c/d>a/bc/d > a/b, then GG is not necessarily (c:d)(c:d)-choosable. Applying probabilistic methods, an upper bound for the kthk^{th} choice number of a graph is given. We also prove that a directed graph with maximum outdegree dd and no odd directed cycle is (k(d+1):k)(k(d+1):k)-choosable for every k≥1k \geq 1. Other results presented in this article are related to the strong choice number of graphs (a generalization of the strong chromatic number). We conclude with complexity analysis of some decision problems related to graph choosability
    • …
    corecore