1,212 research outputs found

    An Analytical Study of Large SPARQL Query Logs

    Full text link
    With the adoption of RDF as the data model for Linked Data and the Semantic Web, query specification from end- users has become more and more common in SPARQL end- points. In this paper, we conduct an in-depth analytical study of the queries formulated by end-users and harvested from large and up-to-date query logs from a wide variety of RDF data sources. As opposed to previous studies, ours is the first assessment on a voluminous query corpus, span- ning over several years and covering many representative SPARQL endpoints. Apart from the syntactical structure of the queries, that exhibits already interesting results on this generalized corpus, we drill deeper in the structural char- acteristics related to the graph- and hypergraph represen- tation of queries. We outline the most common shapes of queries when visually displayed as pseudographs, and char- acterize their (hyper-)tree width. Moreover, we analyze the evolution of queries over time, by introducing the novel con- cept of a streak, i.e., a sequence of queries that appear as subsequent modifications of a seed query. Our study offers several fresh insights on the already rich query features of real SPARQL queries formulated by real users, and brings us to draw a number of conclusions and pinpoint future di- rections for SPARQL query evaluation, query optimization, tuning, and benchmarking

    Shape Expressions Schemas

    Full text link
    We present Shape Expressions (ShEx), an expressive schema language for RDF designed to provide a high-level, user friendly syntax with intuitive semantics. ShEx allows to describe the vocabulary and the structure of an RDF graph, and to constrain the allowed values for the properties of a node. It includes an algebraic grouping operator, a choice operator, cardinalitiy constraints for the number of allowed occurrences of a property, and negation. We define the semantics of the language and illustrate it with examples. We then present a validation algorithm that, given a node in an RDF graph and a constraint defined by the ShEx schema, allows to check whether the node satisfies that constraint. The algorithm outputs a proof that contains trivially verifiable associations of nodes and the constraints that they satisfy. The structure can be used for complex post-processing tasks, such as transforming the RDF graph to other graph or tree structures, verifying more complex constraints, or debugging (w.r.t. the schema). We also show the inherent difficulty of error identification of ShEx

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF
    • …
    corecore