30,003 research outputs found

    Syntactic Complexity of R- and J-Trivial Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity n of these languages. We study the syntactic complexity of R- and J-trivial regular languages, and prove that n! and floor of [e(n-1)!] are tight upper bounds for these languages, respectively. We also prove that 2^{n-1} is the tight upper bound on the state complexity of reversal of J-trivial regular languages.Comment: 17 pages, 5 figures, 1 tabl

    Large Aperiodic Semigroups

    Get PDF
    The syntactic complexity of a regular language is the size of its syntactic semigroup. This semigroup is isomorphic to the transition semigroup of the minimal deterministic finite automaton accepting the language, that is, to the semigroup generated by transformations induced by non-empty words on the set of states of the automaton. In this paper we search for the largest syntactic semigroup of a star-free language having nn left quotients; equivalently, we look for the largest transition semigroup of an aperiodic finite automaton with nn states. We introduce two new aperiodic transition semigroups. The first is generated by transformations that change only one state; we call such transformations and resulting semigroups unitary. In particular, we study complete unitary semigroups which have a special structure, and we show that each maximal unitary semigroup is complete. For n≥4n \ge 4 there exists a complete unitary semigroup that is larger than any aperiodic semigroup known to date. We then present even larger aperiodic semigroups, generated by transformations that map a non-empty subset of states to a single state; we call such transformations and semigroups semiconstant. In particular, we examine semiconstant tree semigroups which have a structure based on full binary trees. The semiconstant tree semigroups are at present the best candidates for largest aperiodic semigroups. We also prove that 2n−12^n-1 is an upper bound on the state complexity of reversal of star-free languages, and resolve an open problem about a special case of state complexity of concatenation of star-free languages.Comment: 22 pages, 1 figure, 2 table

    More Structural Characterizations of Some Subregular Language Families by Biautomata

    Full text link
    We study structural restrictions on biautomata such as, e.g., acyclicity, permutation-freeness, strongly permutation-freeness, and orderability, to mention a few. We compare the obtained language families with those induced by deterministic finite automata with the same property. In some cases, it is shown that there is no difference in characterization between deterministic finite automata and biautomata as for the permutation-freeness, but there are also other cases, where it makes a big difference whether one considers deterministic finite automata or biautomata. This is, for instance, the case when comparing strongly permutation-freeness, which results in the family of definite language for deterministic finite automata, while biautomata induce the family of finite and co-finite languages. The obtained results nicely fall into the known landscape on classical language families.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Symmetric Groups and Quotient Complexity of Boolean Operations

    Full text link
    The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L' are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively. Denote by o any binary boolean operation that is not a constant and not a function of one argument only. For m,n >= 2 with (m,n) not in {(2,2),(3,4),(4,3),(4,4)} we prove that the quotient complexity of LoL' is mn if and only either (a) m is not equal to n or (b) m=n and the bases (ordered pairs of generators) of S_m and S_n are not conjugate. For (m,n)\in {(2,2),(3,4),(4,3),(4,4)} we give examples to show that this need not hold. In proving these results we generalize the notion of uniform minimality to direct products of automata. We also establish a non-trivial connection between complexity of boolean operations and group theory

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Descriptional Complexity of the Languages KaL: Automata, Monoids and Varieties

    Full text link
    The first step when forming the polynomial hierarchies of languages is to consider languages of the form KaL where K and L are over a finite alphabet A and from a given variety V of languages, a being a letter from A. All such KaL's generate the variety of languages BPol1(V). We estimate the numerical parameters of the language KaL in terms of their values for K and L. These parameters include the state complexity of the minimal complete DFA and the size of the syntactic monoids. We also estimate the cardinality of the image of A* in the Schuetzenberger product of the syntactic monoids of K and L. In these three cases we obtain the optimal bounds. Finally, we also consider estimates for the cardinalities of free monoids in the variety of monoids corresponding to BPol1(V) in terms of sizes of the free monoids in the variety of monoids corresponding to V.Comment: In Proceedings DCFS 2010, arXiv:1008.127
    • …
    corecore