60,063 research outputs found

    Complexity in Prefix-Free Regular Languages

    Full text link
    We examine deterministic and nondeterministic state complexities of regular operations on prefix-free languages. We strengthen several results by providing witness languages over smaller alphabets, usually as small as possible. We next provide the tight bounds on state complexity of symmetric difference, and deterministic and nondeterministic state complexity of difference and cyclic shift of prefix-free languages.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Most Complex Non-Returning Regular Languages

    Get PDF
    A regular language LL is non-returning if in the minimal deterministic finite automaton accepting it there are no transitions into the initial state. Eom, Han and Jir\'askov\'a derived upper bounds on the state complexity of boolean operations and Kleene star, and proved that these bounds are tight using two different binary witnesses. They derived upper bounds for concatenation and reversal using three different ternary witnesses. These five witnesses use a total of six different transformations. We show that for each n4n\ge 4 there exists a ternary witness of state complexity nn that meets the bound for reversal and that at least three letters are needed to meet this bound. Moreover, the restrictions of this witness to binary alphabets meet the bounds for product, star, and boolean operations. We also derive tight upper bounds on the state complexity of binary operations that take arguments with different alphabets. We prove that the maximal syntactic semigroup of a non-returning language has (n1)n(n-1)^n elements and requires at least (n2)\binom{n}{2} generators. We find the maximal state complexities of atoms of non-returning languages. Finally, we show that there exists a most complex non-returning language that meets the bounds for all these complexity measures.Comment: 22 pages, 6 figure

    Boolean Circuit Complexity of Regular Languages

    Full text link
    In this paper we define a new descriptional complexity measure for Deterministic Finite Automata, BC-complexity, as an alternative to the state complexity. We prove that for two DFAs with the same number of states BC-complexity can differ exponentially. In some cases minimization of DFA can lead to an exponential increase in BC-complexity, on the other hand BC-complexity of DFAs with a large state space which are obtained by some standard constructions (determinization of NFA, language operations), is reasonably small. But our main result is the analogue of the "Shannon effect" for finite automata: almost all DFAs with a fixed number of states have BC-complexity that is close to the maximum.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Unrestricted State Complexity of Binary Operations on Regular and Ideal Languages

    Get PDF
    We study the state complexity of binary operations on regular languages over different alphabets. It is known that if LmL'_m and LnL_n are languages of state complexities mm and nn, respectively, and restricted to the same alphabet, the state complexity of any binary boolean operation on LmL'_m and LnL_n is mnmn, and that of product (concatenation) is m2n2n1m 2^n - 2^{n-1}. In contrast to this, we show that if LmL'_m and LnL_n are over different alphabets, the state complexity of union and symmetric difference is (m+1)(n+1)(m+1)(n+1), that of difference is mn+mmn+m, that of intersection is mnmn, and that of product is m2n+2n1m2^n+2^{n-1}. We also study unrestricted complexity of binary operations in the classes of regular right, left, and two-sided ideals, and derive tight upper bounds. The bounds for product of the unrestricted cases (with the bounds for the restricted cases in parentheses) are as follows: right ideals m+2n2+2n1m+2^{n-2}+2^{n-1} (m+2n2m+2^{n-2}); left ideals mn+m+nmn+m+n (m+n1m+n-1); two-sided ideals m+2nm+2n (m+n1m+n-1). The state complexities of boolean operations on all three types of ideals are the same as those of arbitrary regular languages, whereas that is not the case if the alphabets of the arguments are the same. Finally, we update the known results about most complex regular, right-ideal, left-ideal, and two-sided-ideal languages to include the unrestricted cases.Comment: 30 pages, 15 figures. This paper is a revised and expanded version of the DCFS 2016 conference paper, also posted previously as arXiv:1602.01387v3. The expanded version has appeared in J. Autom. Lang. Comb. 22 (1-3), 29-59, 2017, the issue of selected papers from DCFS 2016. This version corrects the proof of distinguishability of states in the difference operation on p. 12 in arXiv:1609.04439v

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    The State of World Fisheries and Aquaculture: Sustainability in Action

    Get PDF
    “The 2020 edition of The State of World Fisheries and Aquaculture continues to demonstrate the significant and growing role of fisheries and aquaculture in providing food, nutrition and employment. It also shows the major challenges ahead despite the progress made on a number of fronts. For example, there is growing evidence that when fisheries are properly managed, stocks are consistently above target levels or rebuilding, giving credibility to the fishery managers and governments around the world that are willing to take strong action. However, the report also demonstrates that the successes achieved in some countries and regions have not been sufficient to reverse the global trend of overfished stocks, indicating that in places where fisheries management is not in place, or is ineffective, the status of fish stocks is poor and deteriorating. This unequal progress highlights the urgent need to replicate and re-adapt successful policies and measures in the light of the realities and needs of specific fisheries. It calls for new mechanisms to support the effective implementation of policy and management regulations for sustainable fisheries and ecosystems, as the only solution to ensure fisheries around the world are sustainable

    Most Complex Regular Right-Ideal Languages

    Get PDF
    A right ideal is a language L over an alphabet A that satisfies L = LA*. We show that there exists a stream (sequence) (R_n : n \ge 3) of regular right ideal languages, where R_n has n left quotients and is most complex under the following measures of complexity: the state complexities of the left quotients, the number of atoms (intersections of complemented and uncomplemented left quotients), the state complexities of the atoms, the size of the syntactic semigroup, the state complexities of the operations of reversal, star, and product, and the state complexities of all binary boolean operations. In that sense, this stream of right ideals is a universal witness.Comment: 19 pages, 4 figures, 1 tabl

    Syntactic Complexity of Finite/Cofinite, Definite, and Reverse Definite Languages

    Full text link
    We study the syntactic complexity of finite/cofinite, definite and reverse definite languages. The syntactic complexity of a class of languages is defined as the maximal size of syntactic semigroups of languages from the class, taken as a function of the state complexity n of the languages. We prove that (n-1)! is a tight upper bound for finite/cofinite languages and that it can be reached only if the alphabet size is greater than or equal to (n-1)!-(n-2)!. We prove that the bound is also (n-1)! for reverse definite languages, but the minimal alphabet size is (n-1)!-2(n-2)!. We show that \lfloor e\cdot (n-1)!\rfloor is a lower bound on the syntactic complexity of definite languages, and conjecture that this is also an upper bound, and that the alphabet size required to meet this bound is \floor{e \cdot (n-1)!} - \floor{e \cdot (n-2)!}. We prove the conjecture for n\le 4.Comment: 10 pages. An error concerning the size of the alphabet has been corrected in Theorem
    corecore