9,081 research outputs found

    Computational Complexity of Synchronization under Regular Commutative Constraints

    Full text link
    Here we study the computational complexity of the constrained synchronization problem for the class of regular commutative constraint languages. Utilizing a vector representation of regular commutative constraint languages, we give a full classification of the computational complexity of the constraint synchronization problem. Depending on the constraint language, our problem becomes PSPACE-complete, NP-complete or polynomial time solvable. In addition, we derive a polynomial time decision procedure for the complexity of the constraint synchronization problem, given some constraint automaton accepting a commutative language as input.Comment: Published in COCOON 2020 (The 26th International Computing and Combinatorics Conference); 2nd version is update of the published version and 1st version; both contain a minor error, the assumption of maximality in the NP-c and PSPACE-c results (propositions 5 & 6) is missing, and of incomparability of the vectors in main theorem; fixed in this version. See (new) discussion after main theore

    Synchronizing weighted automata

    Full text link
    We introduce two generalizations of synchronizability to automata with transitions weighted in an arbitrary semiring K=(K,+,*,0,1). (or equivalently, to finite sets of matrices in K^nxn.) Let us call a matrix A location-synchronizing if there exists a column in A consisting of nonzero entries such that all the other columns of A are filled by zeros. If additionally all the entries of this designated column are the same, we call A synchronizing. Note that these notions coincide for stochastic matrices and also in the Boolean semiring. A set M of matrices in K^nxn is called (location-)synchronizing if M generates a matrix subsemigroup containing a (location-)synchronizing matrix. The K-(location-)synchronizability problem is the following: given a finite set M of nxn matrices with entries in K, is it (location-)synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give sufficient conditions for the semiring K when the problems are PSPACE-complete and show several undecidability results as well, e.g. synchronizability is undecidable if 1 has infinite order in (K,+,0) or when the free semigroup on two generators can be embedded into (K,*,1).Comment: In Proceedings AFL 2014, arXiv:1405.527

    Visibly Pushdown Modular Games

    Full text link
    Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automata winning conditions, which are known in the literature. We carefully characterize the computational complexity of the considered decision problem. In particular, we show that modular games with a universal Buchi or co Buchi visibly pushdown winning condition are EXPTIME-complete, and when the winning condition is given by a CARET or NWTL temporal logic formula the problem is 2EXPTIME-complete, and it remains 2EXPTIME-hard even for simple fragments of these logics. As a further contribution, we present a different solution for modular games with finite-state automata winning condition that runs faster than known solutions for large specifications and many exits.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Real-Time Vector Automata

    Full text link
    We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×kk \times k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.Comment: 14 page

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Revisiting the Equivalence Problem for Finite Multitape Automata

    Full text link
    The decidability of determining equivalence of deterministic multitape automata (or transducers) was a longstanding open problem until it was resolved by Harju and Karhum\"{a}ki in the early 1990s. Their proof of decidability yields a co_NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability, which follows the basic strategy of Harju and Karhumaki but replaces their use of group theory with results on matrix algebras. From our proof we obtain a simple randomised algorithm for deciding language equivalence of deterministic multitape automata and, more generally, multiplicity equivalence of nondeterministic multitape automata. The algorithm involves only matrix exponentiation and runs in polynomial time for each fixed number of tapes. If the two input automata are inequivalent then the algorithm outputs a word on which they differ

    Bounded Counter Languages

    Full text link
    We show that deterministic finite automata equipped with kk two-way heads are equivalent to deterministic machines with a single two-way input head and k−1k-1 linearly bounded counters if the accepted language is strictly bounded, i.e., a subset of a1∗a2∗...am∗a_1^*a_2^*... a_m^* for a fixed sequence of symbols a1,a2,...,ama_1, a_2,..., a_m. Then we investigate linear speed-up for counter machines. Lower and upper time bounds for concrete recognition problems are shown, implying that in general linear speed-up does not hold for counter machines. For bounded languages we develop a technique for speeding up computations by any constant factor at the expense of adding a fixed number of counters
    • …
    corecore